Jun 18, 2020

LafargeHolcim, GE and COBOD partner on advanced turbines

GE Renewable Energy
LafargeHolcim
COBOD
Wind turbines
William Girling
3 min
Turbines
LafargeHolcim has released details of a new project it is working on with GE Renewable Energy and COBOD: super-tall turbine towers...

LafargeHolcim has released details of a new project it is working on with GE Renewable Energy and COBOD: super-tall turbine towers.

With wind turbines generally constructed from steel and precast concrete to a height of approximately 100m, the partners’ work is expected to yield a tower of 200m.

Capable of capturing stronger winds due to its increased height, the new type of wind turbine will be far more cost-effective and able to generate more power relative to shorter models. The innovation that makes this possible is a large 3D printed concrete base.

The advantages of a taller wind turbine are made apparent by LafargeHolcim: an 80m tower could yield 15.1 GWh of power annually, whereas a tower doubled in height could result in up to 33% more power at 20.2 GWh.

Pooling talent

With all three companies committed to the idea of improving renewable energy generation, each will be contributing from their own particular area of expertise:

  • GE will provide its design, manufacturing and marketing advice for the new turbines.
  • COBOD (Construction of Buildings on Demand) has the 3D printing and advanced robotics technology necessary for constructing the concrete base.
  • LafargeHolcim will create the specialised concrete used for 3D printing the base, as well as its processing and application.

Edelio Bermejo, Head of R&D for LafargeHolcim, expanded on the utility of 3D printing in the construction:

“Concrete 3D printing is a very promising technology for us, as its incredible design flexibility expands the realm of construction possibilities.

“Being both a user and promoter of clean energy, we are delighted to be putting our material and design expertise to work in this groundbreaking project, enabling cost-efficient construction of tall wind turbine towers and accelerating access to renewable energy.”

COBOD, which made history in 2017 by constructing the first building using 3D printing technology in Europe, stated that it was excited and proud to work with two leading companies in the energy sector. Henrik Lund-Nielsen, Founder, said:

“With our groundbreaking 3D printing technology combined with the competence and resources of our partners, we are convinced that this disruptive move within the wind turbines industry will help drive lower costs and faster execution times, to benefit customers and lower the CO2 footprint from the production of energy.”

Finally, Matteo Belluci Advanced Manufacturing Technology Leader for GE Renewable Energy, predicted that the success of the trio’s endeavour could result in a major disruption to the renewable energy sector.

“3D printing is in GE’s DNA and we believe that Large Format Additive Manufacturing will bring disruptive potential to the Wind Industry. Concrete printing has advanced significantly over the last five years and we believe is getting closer to have real application in the industrial world.

“We are committed to taking full advantage of this technology both from the design flexibility it allows as well as for the logistic simplification it enables on such massive components,” he concluded.

Share article

Jul 29, 2021

Carbon dioxide removal revenues worth £2bn a year by 2030

Energy
technology
CCUS
Netzero
Dominic Ellis
4 min
Engineered greenhouse gas removals will become "a major new infrastructure sector" in the coming decades says the UK's National Infrastructure Commission

Carbon dioxide removal revenues could reach £2bn a year by 2030 in the UK with costs per megatonne totalling up to £400 million, according to the National Infrastructure Commission

Engineered greenhouse gas removals will become "a major new infrastructure sector" in the coming decades - although costs are uncertain given removal technologies are in their infancy - and revenues could match that of the UK’s water sector by 2050. The Commission’s analysis suggests engineered removals technologies need to have capacity to remove five to ten megatonnes of carbon dioxide no later than 2030, and between 40 and 100 megatonnes by 2050.

The Commission states technologies fit into two categories: extracting carbon dioxide directly out of the air; and bioenergy with carbon capture technology – processing biomass to recapture carbon dioxide absorbed as the fuel grew. In both cases, the captured CO2 is then stored permanently out of the atmosphere, typically under the seabed.

The report sets out how the engineered removal and storage of carbon dioxide offers the most realistic way to mitigate the final slice of emissions expected to remain by the 2040s from sources that don’t currently have a decarbonisation solution, like aviation and agriculture. 

It stresses that the potential of these technologies is “not an excuse to delay necessary action elsewhere” and cannot replace efforts to reduce emissions from sectors like road transport or power, where removals would be a more expensive alternative.  

The critical role these technologies will play in meeting climate targets means government must rapidly kick start the sector so that it becomes viable by the 2030s, according to the report, which was commissioned by government in November 2020. 

Early movement by the UK to develop the expertise and capacity in greenhouse gas removal technologies could create a comparative advantage, with the prospect of other countries needing to procure the knowledge and skills the UK develops.

The Commission recommends that government should support the development of this new sector in the short term with policies that drive delivery of these technologies and create demand through obligations on polluting industries, which will over time enable a competitive market to develop. Robust independent regulation must also be put in place from the start to help build public and investor confidence.

While the burden of these costs could be shared by different parts of industries required to pay for removals or in part shared with government, the report acknowledges that, over the longer term, the aim should be to have polluting sectors pay for removals they need to reach carbon targets.

Polluting industries are likely to pass a proportion of the costs onto consumers. While those with bigger household expenditures will pay more than those on lower incomes, the report underlines that government will need to identify ways of protecting vulnerable consumers and to decide where in relevant industry supply chains the costs should fall.

Chair of the National Infrastructure Commission, Sir John Armitt, said taking steps to clean our air is something we’re going to have to get used to, just as we already manage our wastewater and household refuse. 

"While engineered removals will not be everyone’s favourite device in the toolkit, they are there for the hardest jobs. And in the overall project of mitigating our impact on the planet for the sake of generations to come, we need every tool we can find," he said.

“But to get close to having the sector operating where and when we need it to, the government needs to get ahead of the game now. The adaptive approach to market building we recommend will create the best environment for emerging technologies to develop quickly and show their worth, avoiding the need for government to pick winners. We know from the dramatic fall in the cost of renewables that this approach works and we must apply the lessons learned to this novel, but necessary, technology.” 

The Intergovernmental Panel on Climate Change and International Energy Agency estimate a global capacity for engineered removals of 2,000 to 16,000 megatonnes of carbon dioxide each year by 2050 will be needed in order to meet global reduction targets. 

Yesterday Summit Carbon Solutions received "a strategic investment" from John Deere to advance a major CCUS project (click here). The project will accelerate decarbonisation efforts across the agriculture industry by enabling the production of low carbon ethanol, resulting in the production of more sustainable food, feed, and fuel. Summit Carbon Solutions has partnered with 31 biorefineries across the Midwest United States to capture and permanently sequester their CO2 emissions.  

Cory Reed, President, Agriculture & Turf Division of John Deere, said: "Carbon neutral ethanol would have a positive impact on the environment and bolster the long-term sustainability of the agriculture industry. The work Summit Carbon Solutions is doing will be critical in delivering on these goals."

McKinsey highlights a number of CCUS methods which can drive CO2 to net zero:

  • Today’s leader: Enhanced oil recovery Among CO2 uses by industry, enhanced oil recovery leads the field. It accounts for around 90 percent of all CO2 usage today
  • Cementing in CO2 for the ages New processes could lock up CO2 permanently in concrete, “storing” CO2 in buildings, sidewalks, or anywhere else concrete is used
  • Carbon neutral fuel for jets Technically, CO2 could be used to create virtually any type of fuel. Through a chemical reaction, CO2 captured from industry can be combined with hydrogen to create synthetic gasoline, jet fuel, and diesel
  • Capturing CO2 from ambient air - anywhere Direct air capture (DAC) could push CO2 emissions into negative territory in a big way
  • The biomass-energy cycle: CO2 neutral or even negative Bioenergy with carbon capture and storage relies on nature to remove CO2 from the atmosphere for use elsewhere

Share article