Jun 22, 2021

Next Energy Technologies delivers PV window to Paris partner

Windows
SolarPV
construction
Paris
Dominic Ellis
4 min
Next Energy Technologies has delivered its energy-generating prototype window wall to Bouygues Construction in Paris

Next Energy Technologies, makers of a proprietary transparent PV coating that transforms commercial windows into energy producing solar panels, has delivered its PV Prototype Window Wall to Bouygues Construction in Paris.

Bouygues is a leading construction firm that specialises in complex commercial projects and the deal comes weeks after Next announced its $13.4 Million Series C round of funding (click here).

The PV Prototype Window Wall was delivered by NEXT in collaboration with its partners, Walters & Wolf, a leading commercial curtainwall manufacturer and glazing subcontractor headquartered in Fremont, California, and commercial glass fabricator, Glassfab Tempering  Services/Solarfab in Tracy, California. 

“NEXT’s technology is both unique and promising. We’re proud to support their collaboration with Bouygues Construction and will continue to work side by side with them in bringing their product to market,” said Nick Kocelj, President of Walters & Wolf.  

“We support NEXT Energy in their focused effort in providing a unique and innovative product to  the architectural market. When presented the opportunity to participate in this project, we were  eager to assist in any way possible”, said Brian Frea, President of Glassfab Tempering Services/ Solarfab. 

NEXT’s proprietary transparent PV coating transforms commercial windows into  energy-producing solar panels by converting unwanted infrared and UV light into electricity. This fully integrated system can help enable buildings to power themselves with their windows which  retain their traditional transparency and performance. 

The prototype installation consists of 10 transparent PV windows that supply electricity to a battery that powers an interactive display as well as auxiliary charging outlets, for phones, tablets and other electronics.

The purpose of this prototype demonstration is to showcase the  power generation functionality, the exceptional transparency and aesthetics, and the seamless  integration of NEXT windows into a standard glazing system designed by Walters & Wolf to  carry the electronics, wiring and hardware that comprise the balance-of-system. This direct integration into traditional commercial window and framing systems effectively extracts costs  typically associated with packaging and installation of solar. 

Installed in a typical commercial high-rise office building, the first generation of Next windows would offset as much as 10-20% of its power needs, and over a 30-year timeframe, such a building would produce about 20 million kWh of clean power, saving an average of $170,000  annually on utility bills and reducing 14,500 metric tons of carbon dioxide from the atmosphere, the equivalent of powering 1,700 homes for an entire year. In the coming years, Next windows will be commercially available for window sizes up to 5 ft. x 10 ft (1.5 x 3 meters).  

Supply Chain solution to the climate crisis 

Next’s PV coatings are applied to commercial windows during the window fabrication  process, integrating with existing manufacturers without disrupting established workflows and  supply chains. This capital-efficient business model reduces risks to customers, removes  barriers to adoption, and accelerates speed to market, all while adding a high-value product to  the market. This direct integration into traditional commercial window and framing systems  effectively extracts costs typically associated with packaging and installation of solar.

"We are excited to be one of the first global construction companies pioneering NEXT's revolutionary transparent solar panel windows. This innovation will allow Bouygues Construction to offer its clients a simple, sustainable, and profitable solution for buildings that are autonomous in the management of their energy," said Christian De Nacquard, R&D and Innovation Director, Bouygues Bâtiment International.

The EU aims to be climate-neutral by 2050, requiring a fundamental transformation of the construction and building sectors, and 100% of new commercial buildings in California will be designed to zero net energy (ZNE) standards by 2030. Globally, buildings generate an estimated 40% of annual GHG emissions.

“Addressing the climate crisis at the corporate level requires creative and cost-effective solutions. Commercial buildings are an excellent example of something that can be re-imagined and improved to reduce carbon emissions and overall impact,” said Daniel Emmett,
CEO of NEXT. 

“At a more personal level, we’re seeing employees returning to office buildings after more than a year of lockdown vocally prioritise healthy and sustainable work environments as a requirement of in-person work."

In a recent survey, 74% of employees said they would consider changing jobs if their company did not meet their requirements for a healthy and sustainable office environment, added Emmett.

Share article

Jul 28, 2021

Industry movement with heat decarbonisation

Gas
Renewables
Heatnetworks
Decarbonisation
Dominic Ellis
6 min
As SGN and Vital Energi announce 50:50 joint venture, the heat decarbonisation market is seeing some welcome movement

It is estimated that the heat network market requires approximately £30 billion of investment by 2050 to meet the UK Government’s net zero targets, and the decarbonisation of heat has been highlighted as a particular challenge.

The Climate Change Committee’s Sixth Carbon Budget states the UK should target 20% of UK heat demand through low-carbon heat networks by 2050 - but as with most discussions surrounding mass decarbonisation, even reaching that target won't be an easy task. In the UK approximately 40% of energy consumption and 20% of GHG emissions are due to the heating and hot water supply for buildings.

The International Energy Agency (IEA) estimate that globally, around half of all energy consumption is used for providing heat, mainly for homes and industry.

Source: Heat Trust

This week saw some positive movement, however, with gas distribution company SGN and UK renewable energy solutions provider Vital Energi announcing a 50:50 joint venture, which will create an Energy Services Company (ESCO) representing utility infrastructure and heat network providers. 

This includes delivery of heat to developments planned by SGN’s property arm, SGN Place, and the local vicinities where there is a demand for low-carbon heat.

The objective is to supply new and existing residential, industrial and commercial facilities and development activity is already underway for two projects in Scotland and the South East, with another 20 in the pipeline. SGN is looking to develop alternative heat solutions alongside its core gas distribution business and expand into the growing district heating market, recognising the future of heat is likely to include a mix of technological solutions and energy sources.

Vital Energi is seeking to expand into asset ownership opportunities to complement its core design, build and operations businesses. The complementary skillsets of both organisations will offer a compelling proposition for developers, commercial and industrial users and public sector bodies seeking low-carbon heat solutions.

SGN’s Director of Commercial Services and Investments Marcus Hunt said: “Heat networks are likely to play an increasing role in the delivery of UK heat in the context of net zero. The creation of this joint venture with market-leading Vital Energi enables us to build a presence in this emerging market, delivering new heat infrastructure and supporting decarbonisation.”

Nick Gosling, Chief Strategy Officer at Vital Energi, said: “Combining the resources, expertise and know-how of both organisations will allow us to play a major role in delivering the UK’s transition to low and zero-carbon heat.”

In March, the European Marine Energy Centre (EMEC) starting collaborating with Highlands and Islands Airports Limited (HIAL) to decarbonise heat and power at Kirkwall Airport through green hydrogen technology. 2G Energy was selected to deliver a CHP plant which generates heat and electricity from 100% hydrogen.

Heat decarbonisation options 

The Energy & Climate Intelligence Unit (ECIU) highlights the following options for decarbonising heating. 

Electrification

Use renewable electricity to generate heat in the home. As power sector emissions fall, emissions associated with electric heating are decreasing rapidly.

Low carbon gases

Replace natural gas that most homes use for heating with hydrogen, which releases energy but not carbon dioxide, the only waste product is water. Biomethane is also an option as it produces less carbon than natural gas over a full lifecycle.

For hydrogen to work, the pipes in the national gas grid would need to be replaced and home boilers would need to be adapted or changed. This is possible but could incur considerable cost. 

Biomethane is chemically identical to methane from natural gas, so is suited to existing infrastructure and appliances. It is unlikely, however, that it can be produced in sufficient quantities to replace fossil gas entirely.

Hybrids

A hybrid system combining both electrification and hydrogen is a third option. Here, heat pumps could be used to meet the majority of heat demand, with a (low carbon) gas boiler taking over in extremely cold weather. Advantages of this approach include helping establish a market for heat pumps while hydrogen is developed to displace natural gas in the hybrid system eventually, and the ability to call on hydrogen when heat demand is at its very highest.

Heat networks

Heat networks connect a central heat source to a number of buildings via a series of underground hot water pipes, and are popular in countries such as Denmark, where heat networks supply 63% of households. The Government expects the heat networks market in the UK to grow quickly to supply up to 20% of heat demand over the next decade or so, investing £320 million into its flagship Heat Networks Investment Project to help get this underway.

Heat networks work particularly well in built-up urban areas or industrial clusters where there is a large and concentrated demand for heat. Over time, it is thought that if the central heat source can be low carbon, then there is the opportunity to ensure that multiple homes and buildings are decarbonised at once.

Biomass

Biomass can be used to reduce emissions when used instead of more polluting fuels like oil in off gas grid properties. Support for biomass boilers has been available since 2011 via the Renewable Heat Incentive (RHI), but take-up has been low.

Supply constraints also restrict the role that biomass – burning solid material such as wood – can play. In any case, according to the Committee on Climate Change, this resource may be better used in other sectors of the economy such as construction, where it provides carbon storage without the need for CCS and reduces demand for carbon-intensive materials such as steel and cement.

The Energy Transitions Commission (ETC)'s latest report sets out how rapidly increasing demand for bioresources could outstrip sustainable supply, undermining climate mitigation efforts and harming biodiversity, unless alternative zero-carbon options are rapidly scaled-up and use of bioresources carefully prioritised.

"Alternative zero-carbon solutions, such as clean electrification or hydrogen, must be developed rapidly to lessen the need for bio-based solutions," it states.

The overall decarbonisation of industry is another major challenge, especially among four sectors that contribute 45 percent of CO2 emissions: cement, steel, ammonia, and ethylene, according to a McKinsey report. 

The process demands reimagining production processes from scratch and redesigning existing sites with costly rebuilds or retrofits. Furthermore, companies that adopt low-carbon production processes will see a short- to mid-term increase in cost, ultimately placing them at an economic disadvantage in a competitive global commodities market.

Next steps

Ken Hunnisett is Project Director for the Heat Network Investment Project (HNIP)’s delivery partner Triple Point, which is the delivery partner for the government's Heat Network Investment Project, which is responsible for investing up to £320million in strategic, low-carbon heat network projects across England and Wales.

He is calling for the urgent need to invest in the development of new heating infrastructure to support the nation’s decarbonisation effort. So far £165m of HNIP funds have prompted £421m CAPEX, providing more green jobs as the UK economy eases from the lows sustained from the pandemic.  

Decarbonising the UK's heating infrastructure is critical if we are to reach our net-zero goals and it’s crucial that progress is made in this decisive decade, he added. 

"Heat networks are a part of the lowest-cost pathway to decarbonising our homes and workplaces in the future but are also the bit of the jigsaw that we can be putting into place now," he said. "Penetration into the UK market is still low, despite heat representing 37% of UK greenhouse gas emissions, the largest single contributor by some way. Funding needs to be urgently directed towards reducing the environmental impact of the residential sector, particularly given the slow pace of the decline in residential emissions in comparison to those of business and transport."

Currently, just 3% of UK buildings are serviced by heat networks. "Further investment in this industry, using public and private funds, will not only drive wider sustainability targets but will boost the economy by providing more green jobs as the country emerges from the pandemic," he said.

Share article