May 17, 2020

Could a Flash-Charge Bus be Headed to a City Near You?

Electric Vehicles
electric bus
Green Tech
ABB
Admin
2 min
Flash-charge tech charges bus in 15 seconds
ABB, the leading power and automation technology group has developed a new technology that will help power the worlds first high-capacity flash chargi...

 

ABB, the leading power and automation technology group has developed a new technology that will help power the world’s first high-capacity flash charging electric bus system.

ABB announced at the 60th congress of the International Association of Public Transport (UTIP) in Geneva that it is working together with the city’s public transport company (TGP), the Office for the Promotion of Industries and Technologies (OPI) and the Geneva power utility SIG on the TOSA electric bus system pilot project.

The new boost charging technology will be deployed for the first time on a large capacity electric bus, carrying as many as 135 passengers. The bus will be charged directly at selected stops with a 15-second energy boost while the passengers enter and leave the bus, based on a new type of automatic flash-charging mechanism. The pilot project runs between Geneva airport and the city’s international exhibition center, Palexpo.

“Through flash charging, we are able to pilot a new generation of electric buses for urban mass transport that no longer relies on overhead lines,” said Claes Rytoft, ABB’s acting Chief Technology Officer. “This project will pave the way for switching to more flexible, cost-effective, public transport infrastructure while reducing pollution and noise.”

TOSA (Trolleybus Optimisation Système Alimentation) is a zero-carbon-emission solution as the electricity used comes entirely from clean hydro power. The charging time is so quick that it does not interfere with the bus schedule and improves the urban environment and landscape as it does not need overhead lines while providing greater route flexibility. The system uses a laser-controlled moving arm, which connects to an overhead receptacle for charging at bus shelters, instead of the usual trolley poles to overhead lines.

The flash-charging technology and the onboard traction equipment used in this project were developed by ABB and optimized for high-frequency bus routes in key urban areas, carrying large numbers of passengers at peak times. Onboard batteries can be charged in 15 seconds with a 400 kilowatt boost at selected stops. At the end of the bus line a 3 to 4 minute boost enables the full recharge of the batteries. Thanks to an innovative electrical drive system, energy from the roof-mounted charging equipment can be stored in compact batteries, along with the vehicle’s braking energy, powering both the bus and its auxiliary services, such as interior lighting.

SOURCE: ABB

 

Read More in Energy Digital's May Issue

 

DOWNLOAD THE ENERGY DIGITAL IPAD APP

 

 

Share article

Jul 30, 2021

Major move forward for UK’s nascent marine energy sector

marineenergy
renewableenergy
tidalturbine
Sustainability
3 min
The UK’s nascent marine energy sector starts exporting electricity to the grid as the most powerful tidal turbine in the world begins to generate power

Although the industry is small and the technologies are limited, marine-based energy systems look to be taking off as “the world’s most powerful tidal turbine” begins grid-connected power generation at the European Marine Energy Centre

At around 74 metres long, the turbine single-handedly holds the potential to supply the annual electricity demand to approximately 2,000 homes within the UK and offset 2,200 tonnes of CO2 per year.

Orbital Marine Power, a privately held Scottish-based company, announced the turbine is set to operate for around 15 years in the waters surrounding Orkney, Scotland, where the 2-megawatt O2 turbine weighing around 680 metric tons will be linked to a local on-land electricity network via a subsea cable. 

How optimistic is the outlook for the UK’s turbine bid?

Described as a “major milestone for O2” by CEO of Orbital Marine Power Andrew Scott, the turbine will also supply additional power to generate ‘green hydrogen’ through the use of a land-based electrolyser in the hopes it will demonstrate the “decarbonisation of wider energy requirements.” 

“Our vision is that this project is the trigger to the harnessing of tidal stream resources around the world to play a role in tackling climate change whilst creating a new, low-carbon industrial sector,” says Scott in a statement. 

The Scottish Government has awarded £3.4 million through the Saltire Tidal Energy Challenge Fund to support the project’s construction, while public lenders also contributed to the financial requirements of the tidal turbine through the ethical investment platform Abundance Investment.

“The deployment of Orbital Marine Power’s O2, the world’s most powerful tidal turbine, is a proud moment for Scotland and a significant milestone in our journey to net zero,” says Michael Matheson, the Cabinet Secretary for Net-Zero, Energy and Transport for the Scottish Government. 

“With our abundant natural resources, expertise and ambition, Scotland is ideally placed to harness the enormous global market for marine energy whilst helping deliver a net-zero economy.

“That’s why the Scottish Government has consistently supported the marine energy sector for over 10 years.”

However, Orbital Marine CEO Scott believes there’s potential to commercialise the technology being used in the project with the prospect of working towards more efficient and advanced marine energy projects in the future. 

We believe pioneering our vision in the UK can deliver on a broad spectrum of political initiatives across net-zero, levelling up and building back better at the same time as demonstrating global leadership in the area of low carbon innovation that is essential to creating a more sustainable future for the generations to come.” 

The UK’s growing marine energy endeavours

This latest tidal turbine project isn’t a first for marine energy in the UK. The Port of London Authority permitted the River Thames to become a temporary home for trials into tidal energy technology and, more recently, a research project spanning the course of a year is set to focus on the potential tidal, wave, and floating wind technology holds for the future efficiency of renewable energy. The research is due to take place off of the Southwest coast of England on the Isles of Scilly

Share article