Jun 11, 2020

Digital grids: turning energy uncertainty into opportunity

Schneider Electric
Decarbonisation
Digital grids
Alexandre Golisano, Strategy D...
5 min
Abstract grid
Three trends rule the energy sector – decarbonisation, decentralisation, and digitisation...

Three trends rule the energy sector – decarbonisation, decentralisation, and digitisation.

To meet the UK’s environmental and sustainability goals, it has become imperative to decarbonise the grid, incorporating a large proportion of low carbon sources into the energy mix.

This is transforming our system of energy generation from a centralised system to a decentralised model, comprised of small pockets of generation from wind farms, solar panels and even electric vehicle batteries. To incorporate these changes, the grid is becoming more digitised - moving towards a two-way flow of energy where ‘prosumers’ play an active part in grid balancing and energy management.

To protect the digital assets of this new, omnidirectional grid, distributed services operators (DSOs) and distributed network operators (DNOs) must improve and modernise their protection relay solutions, whether it’s through installing new relays or retrofitting existing equipment with smart capabilities. This will save operators money by making maintenance easier, protecting staff from arc flashes and safeguarding the other equipment in their networks.

Out with the Old

Protection relays are digitally operated switches that trip a circuit breaker when a fault or issue has been detected, preventing further problems. It is critical in preventing abnormal activity or adverse conditions that risk damaging important and expensive equipment. Ultimately, protection relays are protection for power systems, there to ensure a continuity of service which protects your employees and the power security of end-users. So, why implement smart protection relays, and what are the drawbacks of legacy solutions.

Power security is critical for consumers relying on utilities for their energy supply. Faults and issues at substations can cause blackouts and major disruption. To make energy supply more resilient and reliable, problems need to be identified, located and resolved rapidly. Although so-called digital relays have been the industry norm for several years, they are often imprecise, not showing the location of the fault and making it more difficult to find and resolve.

Safety is an area that will be better developed with a smart solution. Detecting a problem early contributes to keeping your employees and equipment safe. The longer a fault or problem persists the worse it will get, increasing the chances of a dangerous arc fault or flash (dangerous explosions that result from circuit damage). A more efficient solution network will be able to detect faults before they become problematic.

Cybersecurity is a new consideration for energy operators. Equipment damage is no longer the only danger facing utilities. The energy network is now a target for a wide range of cybercriminals and state actors. Having digital relay solutions is no longer enough – they also need to be cybersecure.

With modern energy use, one weak link could have a calamitous effect - compromising stability, and the optimum delivery and storage of energy. Subsequently, we are at a stage where traditional relay solutions are no longer enough. Today a more connected offering is required if energy operators are to deliver on the next level of service expected by consumers, such as cheaper energy prices for variable-voltage overnight EV charging which allows operators to reduce grid load.

Upgrading Protection

As energy the energy mix becomes more diverse, maintaining the integrity of these next-gen network grids will require efficient, advanced relays that work to minimise downtime by automating processes. Add to that, the rare but recognised risk of security means that utility companies must upgrade protection relays to enhance safety and minimise the loss of costly equipment.

One of the major benefits of a connected solution, is that it allows utilities to exploit a system of ‘predictive maintenance’. Most utilities follow a ‘preventative maintenance’ approach where equipment is checked by technicians/ engineers on a regular but strictly scheduled basis. The problem with this approach is that the likelihood of solving an issue, such as a minor fault or physical damage to the equipment, is left purely to chance.

You can’t respond to issues in real-time, you simply hope a technician finds the problem the next time they perform their checks. In the meantime, that minor fault could snowball into a business interrupting crisis. This could be anything from a power cut that leaves millions without power, to an arc flash which risks personnel safety and the integrity of equipment in a whole facility.

What’s worse is that after the crisis is over you need to then pay for repair costs. These are usually much more expensive than traditional maintenance due to the amount of work involved and potential need to replace a whole section of your facility’s energy grid.

With a connected solution – like a connected protection relay – utilities can monitor equipment condition in real-time. Any issues, software problems or faults will be flagged immediately and sensors within the cabinet can shut down operations within milliseconds. This allows operators to be proactive and schedule maintenance when equipment actually needs it, resulting in less frequent but more effective maintenance. Operators can react to problems in progress and, based on the data collected from equipment, even predict when the next round of maintenance is required. This approach avoids unnecessary and dangerous crises and creates cost efficiencies, both in terms of maintenance and repairs.

Reducing costs and boosting efficiency through hastening the fault detection and resolution processes, are critical to optimising energy networks by doing more with less. This is where smart protection relays play their part, enabling DSOs to deliver a more reliable supply to end-users. Those that are embracing this digitally enabled approach to provide an enhanced service to end-users, are well on the way to improving grid resilience and meet the future of a connected, carbon neutral grid.

This article was contributed by Alexandre Golisano, Strategy Director Power Systems UK & Ireland at Schneider Electric.

Share article

Oct 19, 2020

Itronics successfully tests manganese recovery process

cleantech
manganese
USA
Scott Birch
3 min
Nevada firm aims to become the primary manganese producer in the United States
Nevada firm aims to become the primary manganese producer in the United States...

Itronics - a Nevada-based emerging cleantech materials growth company that manufacturers fertilisers and produces silver - has successfully tested two proprietary processes that recover manganese, with one process recovering manganese, potassium and zinc from paste produced by processing non-rechargeable alkaline batteries. The second recovers manganese via the company’s Rock Kleen Technology.

Manganese, one of the four most important industrial metals and widely used by the steel industry, has been designated by the US Federal Government as a "critical mineral." It is a major component of non-rechargeable alkaline batteries, one of the largest battery categories sold globally.

The use of manganese in EV batteries is increasing as EV battery technology is shifting to use of more nickel and manganese in battery formulations. But according to the US Department of Interior, there is no mine production of manganese in the United States. As such, Itronics is using its Rock Kleen Technology to test metal recoverability from mine tailings obtained from a former silver mine in western Nevada that has a high manganese content. 

In a statement, Itronics says that its Rock Kleen process recovers silver, manganese, zinc, copper, lead and nickel. The company says that it has calculated – based on laboratory test results – that if a Rock Kleen tailings process is put into commercial production, the former mine site would become the only primary manganese producer in the United States.

Itronics adds that it has also tested non-rechargeable alkaline battery paste recovered by a large domestic battery recycling company to determine if it could use one of its hydrometallurgical processes to solubilize the manganese, potassium, and zinc contained in the paste. This testing was successful, and Itronics was able to produce material useable in two of its fertilisers, it says.

"We believe that the chemistry of the two recovery processes would lend itself to electrochemical recovery of the manganese, zinc, and other metals. At this time electrochemical recovery has been tested for zinc and copper,” says Dr John Whitney, Itronics president. 

“Itronics has been reviewing procedures for electrochemical recovery of manganese and plans to move this technology forward when it is appropriate to do so and has acquired electro-winning equipment needed to do that.

"Because of the two described proprietary technologies, Itronics is positioned to become a domestic manganese producer on a large scale to satisfy domestic demand. The actual manganese products have not yet been defined, except for use in the Company's GOLD'n GRO Multi-Nutrient Fertilisers. However, the Company believes that it will be able to produce chemical manganese products as well as electrochemical products," he adds.

Itronics’ research and development plant is located in Reno, about 40 miles west of the Tesla giga-factory. Its planned cleantech materials campus, which will be located approximately 40 miles south of the Tesla factory, would be the location where the manganese products would be produced.

Panasonic is operating one of the world's largest EV battery factories at the Tesla location. However, Tesla and other companies have announced that EV battery technology is shifting to use of nickel-manganese batteries. Itronics is positioned and located to become a Nevada-0based supplier of manganese products for battery manufacturing as its manganese recovery technologies are advanced, the company states.

A long-term objective for Itronics is to become a leading producer of high purity metals, including the U.S. critical metals manganese and tin, using the Company's breakthrough hydrometallurgy, pyrometallurgy, and electrochemical technologies. ‘Additionally, Itronics is strategically positioned with its portfolio of "Zero Waste Energy Saving Technologies" to help solve the recently declared emergency need for domestic production of Critical Minerals from materials located at mine sites,’ the statement continues.

The Company's growth forecast centers upon its 10-year business plan designed to integrate its Zero Waste Energy Saving Technologies and to grow annual sales from $2 million in 2019, to $113 million in 2025.

Share article