May 17, 2020

Key considerations for designing energy efficient products

Energy Efficiency
electric motors
European Energy Using Pr
6 min
The future of efficiency
Written by Chris Paine, sales & application engineer, Morgan Technical Ceramics The first requirements for electric motors due to the European En...


Written by Chris Paine, sales & application engineer, Morgan Technical Ceramics


The first requirements for electric motors due to the European Energy Using Products (EuP) directive came into effect on 16th June 2011 and many manufacturers are now reviewing ways to make their products more efficient.

The aim of the directive is to reduce the environmental impact of energy using products and puts new restrictions in place for energy efficiency. It is relevant for all motors in the power range 0.75kW to 375kW and introduces a new mandatory scale for their efficiency. All motors must now meet the IE2 high efficiency standard and any motors not achieving this standard will be prohibited. The motor efficiency ratings are based on the efficiency classes defined in the IEC 60034-30 standard published by the International Electrotechnical Commission (IEC).

The requirements are being introduced in three stages. Tougher regulations for achieving higher energy efficiencies will be implemented in a second phase in 2015 and a final phase in 2017, whereby all 0.75 – 375 kW motors must be able to meet the IE3 standard, or meet the IE2 standard and be equipped with a variable frequency drive.

Approximately 70 per cent of industrial energy demand comes from electric motors and the directive is expected to result in a dramatic reduction in CO2 emissions. In addition, it is estimated that changes made to energy using products will cut EU annual electricity consumption by five per cent, resulting in energy savings worth around 12 billion Euros.


Did the 2012 Olympics Win the Gold in Sustainability?

Ancient Passive Cooling Designs Provide Insight

Read More in Energy Digital's Hottest Summer Issue

Increasing energy efficiencies through motor design is just one consideration and further efficiencies can be achieved by looking at all aspects of product design, the manufacturing process and involving trusted suppliers at the initial design stages.

For example, choice of materials can have a significant impact on efficiencies and many manufacturers are turning to ceramic components to help. Morgan Technical Ceramics works with leading manufacturers, such as Grundfos, who fully realise the benefits of ceramic and proactively design the material into their products.

The company’s ceramic pump components are being used in circulator pumps. The requirements of circulator pumps, according to the EuP directive, will lead to a reduction in electricity consumption of 23 TWh a year by 2020 in the EU. This savings potential corresponds to the electricity consumption of 14 million people.

Ceramic’s mechanical properties lead to long product life

Stainless steel and other material components (such as shafts and bearings) continue to remain common in pump design. However, the material combination does not always offer the best abrasive wear resistance to limescale and black iron oxide particles found in heating systems. The gradual wearing of these components increases noise levels, reduces efficiency and can lead to pump failure.

Technical ceramic materials can be engineered to feature hardness, physical stability, extreme heat resistance and chemical inertness – important characteristics to increase pump life and the efficiency of the whole system. The life cycle cost of the pump is significantly reduced by using ceramic shafts and bearings.

Ceramic is well known for being extremely hard (Rockwell Hardness of 75-86 R45N), second only to diamond. As such, it is incredibly hard wearing and hence ceramic components used in pumps have a long lifetime despite high speeds of more than 3000 rpm. Ceramic also has exceptional corrosion resistance in aqueous based pumping applications and is not affected by corrosion inhibitors or aggressive environments.

Shaft / bearing clearances can be manufactured within 10µm to ensure minimal pump running noise and provide optimum hydrodynamic lubrication. With the negligible wear of ceramic components over many years (unlike steel) the tolerance fit is maintained, which results in less vibration and less drain on the motor. As a result it delivers optimum efficiency.

Ceramic can also be machined to micron precision tolerances using state of the art diamond processing and grinding wheel technology. For example, on a rod 0.5mm in diameter and 200mm in length, tolerances of 0.5µm roundness, 2µm straightness and 5µm can be achieved. In addition, the components can be produced in high volume.

Image 2 - Ceramic pump components.jpg

Next generation manufacturing

While the mechanical properties of ceramic make it the ideal material choice, next generation manufacturing techniques are enabling the design of more complex ceramic components to further increase efficiencies.

For example, for components requiring high precision and medium to high volumes, Morgan Technical Ceramics offers ceramic injection moulding (CIM). CIM is an innovative forming technique used to manufacture a range of components, including those with high geometric complexities, and provides excellent batch-to-batch repeatability. CIM offers a solution when component complexity goes beyond the boundaries of more basic forming technologies such as dry pressing and is an alternative to CNC machining of ceramics when higher volumes are not viable.

The latest manufacturing techniques are enabling the design of more complex shafts to high precision, for example, smaller, fluted shafts with multiple grooves. Morgan Technical Ceramics has facilitated the design of a rotor that can be easily attached to the shaft by injection
over-moulding. This enables manufacturers to reduce costs associated with assembly and the carbon footprint from manufacturing, while reducing time to market.

Early supplier involvement

Key to the design process is engaging with a trusted supplier early in the development stages, which enhances design capabilities.  Working together, engineers from both companies can review proposals and enhance the vision and aspirations for the project. This increases innovation and creates more open thinking in the preliminary design stages, eliminates waste from the design review cycle and provides better manufacturability and a more predictable product.

Earlier identification of project risks enables more effective management and predictable outcomes, allowing Morgan Technical Ceramics to put contingency plans in place and ensure production readiness to meet critical time to market schedules.

Future efficiency

With greater demand to increase efficiencies and the introduction of the EuP motor directive, manufacturers are reviewing every element of product design. By using ceramic components, the latest manufacturing techniques and involving knowledgeable partners early in the design stage, increased product efficiencies and reduced life cycle costs can be achieved.

Morgan Technical Ceramics is a market leader in pump components, extrusions and precision seals, as well as exciting new technologies such as CIM. It specialises in medium to high volume production of technical ceramics components, providing engineered ceramic solutions to customers around the world and enabling them to increase product efficiencies.

The company has recently been selected as one of Grundfos’ Top 5 “Best Performance Suppliers” for 2010. This accolade demonstrates the exceptional operational and commercial performance Morgan Technical Ceramics consistently delivers to its customers.



Share article

Oct 19, 2020

Itronics successfully tests manganese recovery process

Scott Birch
3 min
Nevada firm aims to become the primary manganese producer in the United States
Nevada firm aims to become the primary manganese producer in the United States...

Itronics - a Nevada-based emerging cleantech materials growth company that manufacturers fertilisers and produces silver - has successfully tested two proprietary processes that recover manganese, with one process recovering manganese, potassium and zinc from paste produced by processing non-rechargeable alkaline batteries. The second recovers manganese via the company’s Rock Kleen Technology.

Manganese, one of the four most important industrial metals and widely used by the steel industry, has been designated by the US Federal Government as a "critical mineral." It is a major component of non-rechargeable alkaline batteries, one of the largest battery categories sold globally.

The use of manganese in EV batteries is increasing as EV battery technology is shifting to use of more nickel and manganese in battery formulations. But according to the US Department of Interior, there is no mine production of manganese in the United States. As such, Itronics is using its Rock Kleen Technology to test metal recoverability from mine tailings obtained from a former silver mine in western Nevada that has a high manganese content. 

In a statement, Itronics says that its Rock Kleen process recovers silver, manganese, zinc, copper, lead and nickel. The company says that it has calculated – based on laboratory test results – that if a Rock Kleen tailings process is put into commercial production, the former mine site would become the only primary manganese producer in the United States.

Itronics adds that it has also tested non-rechargeable alkaline battery paste recovered by a large domestic battery recycling company to determine if it could use one of its hydrometallurgical processes to solubilize the manganese, potassium, and zinc contained in the paste. This testing was successful, and Itronics was able to produce material useable in two of its fertilisers, it says.

"We believe that the chemistry of the two recovery processes would lend itself to electrochemical recovery of the manganese, zinc, and other metals. At this time electrochemical recovery has been tested for zinc and copper,” says Dr John Whitney, Itronics president. 

“Itronics has been reviewing procedures for electrochemical recovery of manganese and plans to move this technology forward when it is appropriate to do so and has acquired electro-winning equipment needed to do that.

"Because of the two described proprietary technologies, Itronics is positioned to become a domestic manganese producer on a large scale to satisfy domestic demand. The actual manganese products have not yet been defined, except for use in the Company's GOLD'n GRO Multi-Nutrient Fertilisers. However, the Company believes that it will be able to produce chemical manganese products as well as electrochemical products," he adds.

Itronics’ research and development plant is located in Reno, about 40 miles west of the Tesla giga-factory. Its planned cleantech materials campus, which will be located approximately 40 miles south of the Tesla factory, would be the location where the manganese products would be produced.

Panasonic is operating one of the world's largest EV battery factories at the Tesla location. However, Tesla and other companies have announced that EV battery technology is shifting to use of nickel-manganese batteries. Itronics is positioned and located to become a Nevada-0based supplier of manganese products for battery manufacturing as its manganese recovery technologies are advanced, the company states.

A long-term objective for Itronics is to become a leading producer of high purity metals, including the U.S. critical metals manganese and tin, using the Company's breakthrough hydrometallurgy, pyrometallurgy, and electrochemical technologies. ‘Additionally, Itronics is strategically positioned with its portfolio of "Zero Waste Energy Saving Technologies" to help solve the recently declared emergency need for domestic production of Critical Minerals from materials located at mine sites,’ the statement continues.

The Company's growth forecast centers upon its 10-year business plan designed to integrate its Zero Waste Energy Saving Technologies and to grow annual sales from $2 million in 2019, to $113 million in 2025.

Share article