Feb 24, 2015

EIA: 2014 to Be Strongest Year on Record for Renewables in the US

2 min
Hold onto your hats, solar fans; 2014 may just shape up to be the best year renewables have ever had in the United States. Data in the U.S. E...

Hold onto your hats, solar fans; 2014 may just shape up to be the best year renewables have ever had in the United States.

Data in the U.S. Energy Information Administration’s (EIA) Monthly Energy Review released on Jan. 28 indicates that when final numbers are in, 2014 will continue an upwards trend in renewable energy production. At this time, data has only been released up to October 2014.

As of October, renewable sources of energy (excluding biomass) generated roughly 4.024 quadrillion British thermal units (Btu) in 2014, according to EIA data. Compared to 2012 and 2013’s 10-month totals—3.688 and 3.940 quadrillion Btu respectively—my very rough calculations place 2014’s yearend total at roughly 4.785 quadrillion Btu. This seems about right given renewable energy’s 2013 total of 4.685 quadrillion Btu and the overall rate of increase over the last decade.

If correct, this would be the most energy ever produced by renewable forms of energy in the United States.

Despite declines in renewable energy’s total output in 2007 and 2012 compared to the respective years before, the period between 2004 and 2013 saw an average year-over-year increase in production of roughly 4.81 percent (again, according to my own calculations). Applying that same rate of increase to 2013’s total production puts the estimate for 2014 closer to 4.910 quadrillion Btu.

Previously making up the largest share of renewable energy generation in the United States, hydroelectric power has seen steady declines in output since a high point in 2011 when it accounted for about 66.67 percent of renewable production at roughly 3.103 quadrillion Btu. Geothermal energy production rose slightly in 2013 over 2012, but appears to be scheduled for a modest drop in 2014.

Increasingly utilized solar and wind power installations have been making up for a major part of those declines. Comparing 10-month totals between 2012 and 2014, solar saw an increase in production of about 90.52 percent to settle at roughly 362 trillion Btu. Wind saw a 29.15 percent increase to settle at 1.409 quadrillion Btu.

While many feared that the drop in oil prices since June 2014 would hinder further growth in renewables pending a rebound, the data from the EIA appears to refute that.

In a nutshell, it’s looking like another great year from renewable energy.

To see the EIA report, click here: http://1.usa.gov/1EBGZtH

Share article

Jul 29, 2021

Carbon dioxide removal revenues worth £2bn a year by 2030

Dominic Ellis
4 min
Engineered greenhouse gas removals will become "a major new infrastructure sector" in the coming decades says the UK's National Infrastructure Commission

Carbon dioxide removal revenues could reach £2bn a year by 2030 in the UK with costs per megatonne totalling up to £400 million, according to the National Infrastructure Commission

Engineered greenhouse gas removals will become "a major new infrastructure sector" in the coming decades - although costs are uncertain given removal technologies are in their infancy - and revenues could match that of the UK’s water sector by 2050. The Commission’s analysis suggests engineered removals technologies need to have capacity to remove five to ten megatonnes of carbon dioxide no later than 2030, and between 40 and 100 megatonnes by 2050.

The Commission states technologies fit into two categories: extracting carbon dioxide directly out of the air; and bioenergy with carbon capture technology – processing biomass to recapture carbon dioxide absorbed as the fuel grew. In both cases, the captured CO2 is then stored permanently out of the atmosphere, typically under the seabed.

The report sets out how the engineered removal and storage of carbon dioxide offers the most realistic way to mitigate the final slice of emissions expected to remain by the 2040s from sources that don’t currently have a decarbonisation solution, like aviation and agriculture. 

It stresses that the potential of these technologies is “not an excuse to delay necessary action elsewhere” and cannot replace efforts to reduce emissions from sectors like road transport or power, where removals would be a more expensive alternative.  

The critical role these technologies will play in meeting climate targets means government must rapidly kick start the sector so that it becomes viable by the 2030s, according to the report, which was commissioned by government in November 2020. 

Early movement by the UK to develop the expertise and capacity in greenhouse gas removal technologies could create a comparative advantage, with the prospect of other countries needing to procure the knowledge and skills the UK develops.

The Commission recommends that government should support the development of this new sector in the short term with policies that drive delivery of these technologies and create demand through obligations on polluting industries, which will over time enable a competitive market to develop. Robust independent regulation must also be put in place from the start to help build public and investor confidence.

While the burden of these costs could be shared by different parts of industries required to pay for removals or in part shared with government, the report acknowledges that, over the longer term, the aim should be to have polluting sectors pay for removals they need to reach carbon targets.

Polluting industries are likely to pass a proportion of the costs onto consumers. While those with bigger household expenditures will pay more than those on lower incomes, the report underlines that government will need to identify ways of protecting vulnerable consumers and to decide where in relevant industry supply chains the costs should fall.

Chair of the National Infrastructure Commission, Sir John Armitt, said taking steps to clean our air is something we’re going to have to get used to, just as we already manage our wastewater and household refuse. 

"While engineered removals will not be everyone’s favourite device in the toolkit, they are there for the hardest jobs. And in the overall project of mitigating our impact on the planet for the sake of generations to come, we need every tool we can find," he said.

“But to get close to having the sector operating where and when we need it to, the government needs to get ahead of the game now. The adaptive approach to market building we recommend will create the best environment for emerging technologies to develop quickly and show their worth, avoiding the need for government to pick winners. We know from the dramatic fall in the cost of renewables that this approach works and we must apply the lessons learned to this novel, but necessary, technology.” 

The Intergovernmental Panel on Climate Change and International Energy Agency estimate a global capacity for engineered removals of 2,000 to 16,000 megatonnes of carbon dioxide each year by 2050 will be needed in order to meet global reduction targets. 

Yesterday Summit Carbon Solutions received "a strategic investment" from John Deere to advance a major CCUS project (click here). The project will accelerate decarbonisation efforts across the agriculture industry by enabling the production of low carbon ethanol, resulting in the production of more sustainable food, feed, and fuel. Summit Carbon Solutions has partnered with 31 biorefineries across the Midwest United States to capture and permanently sequester their CO2 emissions.  

Cory Reed, President, Agriculture & Turf Division of John Deere, said: "Carbon neutral ethanol would have a positive impact on the environment and bolster the long-term sustainability of the agriculture industry. The work Summit Carbon Solutions is doing will be critical in delivering on these goals."

McKinsey highlights a number of CCUS methods which can drive CO2 to net zero:

  • Today’s leader: Enhanced oil recovery Among CO2 uses by industry, enhanced oil recovery leads the field. It accounts for around 90 percent of all CO2 usage today
  • Cementing in CO2 for the ages New processes could lock up CO2 permanently in concrete, “storing” CO2 in buildings, sidewalks, or anywhere else concrete is used
  • Carbon neutral fuel for jets Technically, CO2 could be used to create virtually any type of fuel. Through a chemical reaction, CO2 captured from industry can be combined with hydrogen to create synthetic gasoline, jet fuel, and diesel
  • Capturing CO2 from ambient air - anywhere Direct air capture (DAC) could push CO2 emissions into negative territory in a big way
  • The biomass-energy cycle: CO2 neutral or even negative Bioenergy with carbon capture and storage relies on nature to remove CO2 from the atmosphere for use elsewhere

Share article