Nov 6, 2014

Understanding the PR Risks of Solar Energy

Mike Lopez
3 min
Solar energy is touted as a cleaner form of energy, but it’s not without its problems. From damage to wildlife to cost concerns, there...

Solar energy is touted as a cleaner form of energy, but it’s not without its problems.

From damage to wildlife to cost concerns, there are several public relations issues that have the potential to affect the demand for solar energy among consumers. Most would consider these issues extremely minor when compared to the dangers and damage associated with fossil fuel production and use, but nonetheless, these “problems” with solar energy are important to recognize and understand.

Hazard to Birds

Thousands of birds have burned to death near the Ivanpah Solar Electric Generating System in the Mojave Desert. The solar energy system is set up to direct rays of sunlight to heat up boilers in order to create steam and produce energy. The reflected light draws bugs to the area, which the birds then fly after. The birds’ wings become singed from the sunlight, causing them to either fall to the ground and die on impact or starve if they are unable to fly again. The U.S. Fish and Wildlife Service is asking for local bird population studies to be conducted before any additional systems are built.


Solar energy is considered a clean form of energy, but the equipment needed to harness this energy isn’t as eco-friendly. The solar panel manufacturing process creates water contaminants and polluted sludge. Manufacturers also have to remove all of the hazardous waste they produce, which involves using trucks or trains to get it to the closest waste facility. These facilities are usually hundreds or thousands of miles away from the solar panel plant, resulting in a considerable amount of carbon emissions along the way.

Unreliable Energy Supply

One of the biggest issues that the solar energy industry faces when it comes to consumer demand is the fact that this type of energy is intermittent. Solar energy systems rely on sunlight to produce power, which means that they are unable to do so at night. They can generate power on cloudy or rainy days, but not as much as they produce on clear, sunny days. While consumers can get a battery backup for storing power, this is an expensive purchase to make in addition to the cost of the system itself.

Higher Initial Costs

Solar energy systems cost more upfront than systems that run on fossil fuels due to the complex installation process and the cost of solar panels and other equipment. This is another big factor that has kept more consumers from investing in solar energy for their homes. While the initial costs are high, consumers can lower the cost with financial incentives, such as rebates and tax incentives.

While these PR risks are certainly indicitive of challenges the industry is working to address, understanding them before they become a problem can certainly lead to more effective communication betweeen solar companies, the rest of the industry, and the public. 

Author Mike Lopez is the founder of the Green Lifestyle startup

Share article

Jul 29, 2021

Carbon dioxide removal revenues worth £2bn a year by 2030

Dominic Ellis
4 min
Engineered greenhouse gas removals will become "a major new infrastructure sector" in the coming decades says the UK's National Infrastructure Commission

Carbon dioxide removal revenues could reach £2bn a year by 2030 in the UK with costs per megatonne totalling up to £400 million, according to the National Infrastructure Commission

Engineered greenhouse gas removals will become "a major new infrastructure sector" in the coming decades - although costs are uncertain given removal technologies are in their infancy - and revenues could match that of the UK’s water sector by 2050. The Commission’s analysis suggests engineered removals technologies need to have capacity to remove five to ten megatonnes of carbon dioxide no later than 2030, and between 40 and 100 megatonnes by 2050.

The Commission states technologies fit into two categories: extracting carbon dioxide directly out of the air; and bioenergy with carbon capture technology – processing biomass to recapture carbon dioxide absorbed as the fuel grew. In both cases, the captured CO2 is then stored permanently out of the atmosphere, typically under the seabed.

The report sets out how the engineered removal and storage of carbon dioxide offers the most realistic way to mitigate the final slice of emissions expected to remain by the 2040s from sources that don’t currently have a decarbonisation solution, like aviation and agriculture. 

It stresses that the potential of these technologies is “not an excuse to delay necessary action elsewhere” and cannot replace efforts to reduce emissions from sectors like road transport or power, where removals would be a more expensive alternative.  

The critical role these technologies will play in meeting climate targets means government must rapidly kick start the sector so that it becomes viable by the 2030s, according to the report, which was commissioned by government in November 2020. 

Early movement by the UK to develop the expertise and capacity in greenhouse gas removal technologies could create a comparative advantage, with the prospect of other countries needing to procure the knowledge and skills the UK develops.

The Commission recommends that government should support the development of this new sector in the short term with policies that drive delivery of these technologies and create demand through obligations on polluting industries, which will over time enable a competitive market to develop. Robust independent regulation must also be put in place from the start to help build public and investor confidence.

While the burden of these costs could be shared by different parts of industries required to pay for removals or in part shared with government, the report acknowledges that, over the longer term, the aim should be to have polluting sectors pay for removals they need to reach carbon targets.

Polluting industries are likely to pass a proportion of the costs onto consumers. While those with bigger household expenditures will pay more than those on lower incomes, the report underlines that government will need to identify ways of protecting vulnerable consumers and to decide where in relevant industry supply chains the costs should fall.

Chair of the National Infrastructure Commission, Sir John Armitt, said taking steps to clean our air is something we’re going to have to get used to, just as we already manage our wastewater and household refuse. 

"While engineered removals will not be everyone’s favourite device in the toolkit, they are there for the hardest jobs. And in the overall project of mitigating our impact on the planet for the sake of generations to come, we need every tool we can find," he said.

“But to get close to having the sector operating where and when we need it to, the government needs to get ahead of the game now. The adaptive approach to market building we recommend will create the best environment for emerging technologies to develop quickly and show their worth, avoiding the need for government to pick winners. We know from the dramatic fall in the cost of renewables that this approach works and we must apply the lessons learned to this novel, but necessary, technology.” 

The Intergovernmental Panel on Climate Change and International Energy Agency estimate a global capacity for engineered removals of 2,000 to 16,000 megatonnes of carbon dioxide each year by 2050 will be needed in order to meet global reduction targets. 

Yesterday Summit Carbon Solutions received "a strategic investment" from John Deere to advance a major CCUS project (click here). The project will accelerate decarbonisation efforts across the agriculture industry by enabling the production of low carbon ethanol, resulting in the production of more sustainable food, feed, and fuel. Summit Carbon Solutions has partnered with 31 biorefineries across the Midwest United States to capture and permanently sequester their CO2 emissions.  

Cory Reed, President, Agriculture & Turf Division of John Deere, said: "Carbon neutral ethanol would have a positive impact on the environment and bolster the long-term sustainability of the agriculture industry. The work Summit Carbon Solutions is doing will be critical in delivering on these goals."

McKinsey highlights a number of CCUS methods which can drive CO2 to net zero:

  • Today’s leader: Enhanced oil recovery Among CO2 uses by industry, enhanced oil recovery leads the field. It accounts for around 90 percent of all CO2 usage today
  • Cementing in CO2 for the ages New processes could lock up CO2 permanently in concrete, “storing” CO2 in buildings, sidewalks, or anywhere else concrete is used
  • Carbon neutral fuel for jets Technically, CO2 could be used to create virtually any type of fuel. Through a chemical reaction, CO2 captured from industry can be combined with hydrogen to create synthetic gasoline, jet fuel, and diesel
  • Capturing CO2 from ambient air - anywhere Direct air capture (DAC) could push CO2 emissions into negative territory in a big way
  • The biomass-energy cycle: CO2 neutral or even negative Bioenergy with carbon capture and storage relies on nature to remove CO2 from the atmosphere for use elsewhere

Share article