Apr 6, 2012

Wind Turbine that Produces Drinkable Water

Admin
2 min
  French technology start-up Eole Water is working on a wind turbine in the United Arab Emira...

 

French technology start-up Eole Water is working on a wind turbine in the United Arab Emirates that can produce hundreds of liters of water daily from its dry desert air. Tests from the water maker systems (WMS) have already proven that the device is capable of flowing 500-800 liters of water per day through the process of condensation.

Researchers hope to scale up the technology to produce over 1,000 liters a day with a tower-top system. After producing ideal results in the prototype stage, it is believed that the technology would work even better in areas offshore or near the coast where there are higher humidity and wind conditions.

The idea was originally developed by Eole CEO Marc Parent, an engineer who had been reducing his bottled water costs by siphoning the condensation from his air conditioner in the 1990s.

For the Middle East, where water shortage is a reality, the technology could prove to be particularly beneficial for remote communities. Companies like Emerson, Siemens, Danfoss, Carel and Arcelor Mittal have shown interest in partnering with Eole to develop the technology.

SEE OTHER TOP STORIES IN THE ENERGY DIGITAL CONTENT NETWORK

Deep Ocean Energy Market Gains Momentum

Japan Turns to Geothermal Energy

Check out March's Issue of Energy Digital!

The turbine features a 13 meter diameter rotor with a 12-tonne nacelle housing a direct-drive permanent-magnet generator protected by sand-shutters, cooling compressors, stainless-steel humidity condensers, an airflow regulator and a heat exchanger. Eole Water's WMS1000 can turn a day's wind energy into as much as 2,000 liters of drinking water by drawing wind through air regulators, which are then heated by the turbine's generator to become steam. The steam is then compressed and the moisture condenses, allowing for water to cascade down pipes within the turbine and into stainless steel tanks for purification.

According to its tests, the water meets drinking-quality standards set by the World Health Organization after a five-stage process. The leftover 30kW produced by the turbine powers the purification system.

 

DOWNLOAD THE ENERGY DIGITAL IPAD APP

Share article

Apr 23, 2021

Drax advances biomass strategy with Pinnacle acquisition

Drax
Biomass
Sustainability
BECCS
Dominic Ellis
2 min
Drax is advancing biomass following Pinnacle acquisition it reported in a trading update

Drax' recently completed acquisition of Pinnacle more than doubles its sustainable biomass production capacity and significantly reduces its cost of production, it reported in a trading update.

The Group’s enlarged supply chain will have access to 4.9 million tonnes of operational capacity from 2022. Of this total, 2.9 million tonnes are available for Drax’s self-supply requirements in 2022, which will rise to 3.4 million tonnes in 2027.

The £424 million acquisition of the Canadian biomass pellet producer supports Drax' ambition to be carbon negative by 2030, using bioenergy with carbon capture and storage (BECCS) and will make a "significant contribution" in the UK cutting emissions by 78% by 2035 (click here).

Drax CEO Will Gardiner said its Q1 performance had been "robust", supported by the sale of Drax Generation Enterprise, which holds four CCGT power stations, to VPI Generation.

This summer Drax will undertake maintenance on its CfD(2) biomass unit, including a high-pressure turbine upgrade to reduce maintenance costs and improve thermal efficiency, contributing to lower generation costs for Drax Power Station.

In March, Drax secured Capacity Market agreements for its hydro and pumped storage assets worth around £10 million for delivery October 2024-September 2025.

The limitations on BECCS are not technology but supply, with every gigatonne of CO2 stored per year requiring approximately 30-40 million hectares of BECCS feedstock, according to the Global CCS Institute. Nonetheless, BECCS should be seen as an essential complement to the required, wide-scale deployment of CCS to meet climate change targets, it concludes.

Share article