Mar 7, 2018

Smart cities and the future of carbon capture

Mark Spence
5 min
Smart cities are aiming to reduce CO2 emissions through implementing new technology
The UK Department for Business, Innovation and Skills (BIS) offers a broad definition of a smart city. According to BIS, it consider...

The UK Department for Business, Innovation and Skills (BIS) offers a broad definition of a smart city. According to BIS, it considers the concept a ‘process’ rather than a static outcome, where increased citizen engagement, hard infrastructure, social capital and digital technologies make cities more liveable, resilient and better able to respond to challenges. These challenges include environmental issues and how technology and innovation will lead to a better quality of life and a reduction in energy consumption within cities.

The effective management of energy production, distribution and consumption is one of the major hurdles facing cities of the future – particularly in the face of increased urbanisation. It’s thought that cities represent three quarters of energy consumption and 80% of CO2 emissions worldwide. They also house half the world's population, a figure set to rise to 75% by 2050. Clearly that brings with it a number of potential environmental problems such as CO2 emissions.

Dealing with CO2

Many cities have industrial hubs that generate significant CO2 emissions and pollute the urban environment, and locating somewhere to house these emissions is extremely important for smart cities of the future.

But there are businesses and projects out there trying to confront the issues that cities will have to deal with and more specifically, as far as carbon capture is concerned, how we can reverse engineer the presence of CO2 from ambient air. An example of one such project was that undertaken by a team from the University of Amsterdam and the Vrije Universiteit. As part of the iGEM 2017 initiative set up by MIT in Boston, this group looked into reimagining the way we look at C02.

The way most of us recognise CO2 is as a pollutant that harms urban environments – but what if that pollutant could be captured, stored, and then used as a resource to synthesise chemical building blocks? The team called this idea Carbon Capture and Utilisation (CCU). They looked at using CO2 as a viable resource and an alternative to oil by employing cyanobacteria to take up CO2 from the atmosphere before directly turning it into the valuable chemical fumarate. Essentially a form of photosynthesis, the team claim this process is fast and efficient because no arable land is required. Fumarate is used to produce certain plastics, food additives and medicines, but is currently made from petroleum with its estimated global market size expected to go beyond $760mn by 2020.

The pioneers of carbon capture

One of the leading lights in CO2 capture is Professor Klaus S. Lackner, director of the Lenfest Center for Sustainable Energy at the Earth Institute, Columbia University. Lackner has long maintained, and takes his inspiration from, the idea that tree leaves have already given us a successful natural prototype for capturing CO2 emissions.

Back in 2015 Lackner told Fast Company his calculations suggested the air capture device he was developing would be 1,000 times more effective than a single tree. “There’s no question it works,” he said. “Whether you can do it practically remains to be seen and proved.” This concept has been taken on since. Recently, the World Economic Forum and Scientific American named Harvard University chemist Dan Nocera’s artificial ‘leaf’ as one of the top emerging technologies of 2017.

A number of other scientists and entrepreneurs such as Catalytic Innovations, Opus 12, Carbonclean, Dioxide Materials and Bill Gates-backed Carbon Engineering are also working on technologies to make recycling carbon dioxide a profitable industry.

Carbon capture: Where are we now?

Swiss company Climeworks claims it is the first company in the world to commercially capture CO2 from ambient air using its own specially designed technology, and recently opened its first commercial plant at the end of May last year. Located at a Climeworks facility near Zurich, developers say the plant will capture about 900 tonnes of CO2 annually – the equivalent level released from around 200 cars.

The plant sits on top of a waste heat recovery facility that powers the process. Fans push air through a filter system that collects CO2. When the filter is saturated, the CO2 is separated. The gas is then sent through an underground pipeline to a greenhouse to help grow vegetables. However, according to co-founder Jan Wurzbacher, the collected CO2 can also be used elsewhere commercially. “Once captured, this CO2 can then be sold on the merchant market for the food and beverage industry and can be used for the production of synthetic renewable fuels and materials,” he said.

Speaking to last year, Christoph Gebald, Co-founder and Managing Director of Climeworks, said: "Highly scalable negative emission technologies are crucial if we are to stay below the two-degree target [for global temperature rise] of the international community."

Climeworks is not alone in combatting and finding new uses for CO2.

Global Thermostat

Silicon Valley-based Global Thermostat has been making waves on the carbon capture front since 2010. Their power plant quite literally reverses the process of carbon production by sucking CO2 out of the air and then turning it into useful products for use in plastics and synthetic fuels.

Speaking to Forbes, Global Thermostat CEO and Co-founder, Graciela Chichilnisky said: “If you think of a dehumidifier, it takes water molecules from the air; our product does the same. But instead of taking water, we’re taking CO2. It’s a power plant that cleans the atmosphere. We call it (the process) ‘carbon negative’.”

While not everyone is sold on the idea of ambient air carbon capture, Chichilnisky said: “Our technology is very, very low cost. We don’t use electricity. We use low temperature heat and we can produce CO2 in any amount practically.”

Making CO2 a commercially viable product is certainly one half of the discussion, but the other is surely around the positive impact these innovations could have on the environment, and therefore, cities of the future. This is something that Global Thermostat’s Chichilnisky has considered: “We are writing the future because we are changing the use of energy.”

Share article

Jul 29, 2021

Taking the lid off digital transformation

Amish Sabharwal
5 min
Amish Sabharwal, Executive Vice President, Engineering Business, at AVEVA reflects on the pandemic's impact and why the energy sector must embrace digital

Amish Sabharwal is Executive Vice President for AVEVA’s Industrial Engineering Business Unit which is responsible for delivering simulation, engineering, design, project execution, operator training and project management software to the Global Industrial Market. With 25 years' experience globally within the Energy, Chemicals and Power industries, he is focused on delivering Digital Transformation outcomes for Owner Operators, EPC and Suppliers by leveraging technology to create value added opportunities to business processes. Amish is a professional engineer who holds a Masters and Bachelors in Chemical Engineering from the University of Calgary. Here he reflects on the impact the pandemic has had on the industry and why it must be at the cutting edge of digital transformation.

Oil and gas companies faced formidable challenges to their efficiency, sustainability and profitability in 2020. As a result of the pandemic, prices collapsed severely and the urgency to tackle these issues intensified. The economic discomfort is being felt throughout the oil and gas value chain.

Upstream companies seek to maximise production from onshore and offshore wells safely and economically. In the midstream, the primary concern of hydrocarbon pipeline operators is to ensure safe, reliable and compliant operations - all while managing energy costs and minimising time and installed costs. Across the downstream, refining and petrochemical producers strive to achieve superior performance through better management of their energy usage and costs.

Considering these priorities, the lack of digital maturity across oil and gas is perhaps surprising. According to multinational professional services firm PwC, “One of the clearest and most viable responses to these systemic challenges is to accelerate digitisation strategies to help improve resilience and remain attractive to investors.” But, “of more than 200 oil and gas companies surveyed, only 7% identified themselves as digital champions while more than 70% of respondents considered themselves to be in the early stages of digital maturity”.

Optimisation and innovation

In today’s economic environment, capital budgets and overheads are constantly being cut. Oil and gas producers are faced with rising manufacturing costs, global competition and soaring energy costs. To meet these challenges, companies must optimise manufacturing operations and make performance improvements to positively impact their bottom lines.

Digital transformation offers new toolsets that enable oil and gas producers to increase their competitiveness. These digital toolsets help improve yields of valuable products while reducing energy consumption and increasing throughput. Using digital technology, manufacturers can create a complete digital twin of their processes and assets to respond quickly and easily to unexpected events, reduce shutdown time, work and train operators remotely and evaluate what-if scenarios in batch processing and manufacturing.

Through digital transformation, operators can combine real-time process data with current economic conditions, giving operators the ability to make informed decisions at an expedited rate. Information sharing increases while stakeholders also improve their ability to visualise results and key performance indicator data across processes and overall plant production.

Technology offers the potential to impact process yield, energy use and throughput optimisation. Here are some considerations:

Own and maintain your own engineering data
Engineering data tells you what equipment is installed on each plant, what size it is, how it is connected and where it is located through 3D visualisation. It is generated in capital projects, from newbuild plants to brownfield revamps, and forms the backbone of the digital twin.

Accurate data, kept in one place, ensures the reliability of a digital twin’s output and the efficiency of operations throughout the asset’s lifecycle. Global oil and gas producers are moving fast to invest in their own cloud-based data platforms for current and future capital projects, operations and maintenance as part of their digital transformation projects.

Evaluate process design in the cloud to reduce costs
By leveraging the almost infinite processing power and storage available through cloud-based architecture, companies can accelerate process design while reducing capital investment costs for process modelling and training.

Oil and gas producers can spin up cloud-based servers and computing resources as needed. This also accelerates the flow of information throughout process design. A cloud-based architecture for process design increases information accessibility, enhances availability and significantly reduces total cost of ownership.

Encourage online collaboration
Process innovations becomes seamless through collaboration. Separating the content from the product allows the content, such as simulation models, to be managed easily with file history logs in a central repository. Efficiency is significantly increased using cloud-based architecture as refineries can adapt to changing needs.

Computing power can also be scaled up or down with varying numbers of virtual machines to facilitate simulation templates for engineering test or training scenarios. Secure user access control allows administrators to add, delete or edit users and privileges as needed. IT overheads are simplified to a pure on-demand cloud-based architecture where machines are accessed via a secure URL, and new versions of process designs are available as soon as released.

Accelerate operational excellence through a digital engineering platform
Consider supporting the entire engineering lifecycle from representation of the actual piping and instrumentation diagram, mapping each equipment object to a detailed engineering database and 3D model; to building/testing the dynamic stimulation early in the process design; optimising the process and control design, comparing capital versus operating costs; and the continuous improvement of operations as the engineering model becomes a plant’s digital twin.

Unify your supply chain model planning and operations
A complete 360-degree view of the digital value chain means all aspects of the enterprise are visualised, analysed and optimised. Inputs to the enterprise, such as feedstock and raw materials, are analysed in real-time against planning, operations, scheduling and distribution. Full plant models are managed simultaneously within a supply and distribution network.

Combining data and analysis

There are three key technological trends that will continue to accelerate adoption and help businesses reinvent themselves. First, cloud computing allows companies to manage large volumes of data generated in operations and improves data quality, data availability and single-source transparency across complex value chains.

Second, connectivity and the Internet of Things, in which machines carry sensors that support remote performance monitoring and efficient equipment integration, will support energy use optimisation and costs across company operations. Third, AI and ML tools help analyse data and identify operational patterns and shortcomings that can be used to improve efficiency, for example, in predictive maintenance.

Digital transformation offers a fresh lens to improve workforce training, sustainability, productivity, safety and regulatory compliance - while adapting to unforeseen events. Through digital transformation, oil and gas producers can more confidently explore opportunities, reduce operational risk and shrink the gap between plans and results.

Share article