May 17, 2020

A compass improves oil production

Admin
3 min
Compass and map.
[email protected] Make sure to check out the latest issue of Energy Digital magazine By using the earths magnetic field, combined with new innovativ...

Make sure to check out the latest issue of Energy Digital magazine 

By using the earth’s magnetic field, combined with new innovative technology, oil and gas drilling companies are increasing oilfield productivity while reducing development costs and environmental impacts.

This technology and its applications across the world are highlighted in an article in the fall 2013 issue of Oilfield Review. It also discusses the public-private collaboration between the U.S. Geological Survey and partners to successfully implement the technology.

These days, multiple reservoirs of oil and gas can be accessed from a single platform by drilling vertically and then horizontally. Drill operators need to know which way their drill bits are going to maximize oil production and avoid collisions with other wells. One way to accomplish this important task is to install a magnetometer—a sort of modern-day “compass”—in a drill-string instrument package that follows the drill bit.

The USGS plays a unique role by monitoring the geomagnetic field every single second at magnetic observatories throughout the country. Through a process called geomagnetic referencing, simultaneous measurements of the magnetic field in the drill hole are combined with those from magnetic observatories at the earth’s surface to produce a highly accurate estimate of the drill bit position and direction.

The earth’s magnetic field changes all the time across the world as a result of factors like periodic daily tides or rapid magnetic storms that are related to the 11-year sunspot solar cycle. And at high latitudes, such as in northern Alaska or the North Sea, the geomagnetic field can be very active and can change dramatically during magnetic storms.

“Drill-bit positioning requires directional accuracy of a fraction of a degree, and this can be accomplished with advanced technology and expert understanding of the earth’s dynamic magnetic field,” said Carol A. Finn, USGS Geomagnetism group leader.

“USGS operational systems measure the magnetic field on a continuous basis. These data are provided as a service to research scientists, civilian and defense government agencies, and to customers in the private sector, including the oil and gas drilling industry.”

The USGS Geomagnetism Program monitors variations in the earth’s magnetic field through a network of 14 ground-based observatories around the United States and its territories. There are many customers for geomagnetism data, since the variable conditions of space weather can interfere with radio communication, GPS systems, electric power grids, the operation and orientation of satellites, and even air travel as high altitude pilots and astronauts can be subjected to enhanced levels of radiation.

Internationally, the USGS magnetic observatory network is part of the global INTERMAGNET network. Domestically, the USGS Geomagnetism Program works cooperatively with government partners within the U.S. National Space Weather Program, including NOAA and the Air Force Weather Agency, and with private companies that are affected by space weather and geomagnetic activity.

Share article

Apr 16, 2021

Hydrostor receives $4m funding for A-CAES facility in Canada

energystorage
Canada
Netzero
Dominic Ellis
2 min
The funding will be used to complete essential engineering and planning, and enable Hydrostor to take critical steps toward construction
The funding will be used to complete essential engineering and planning, and enable Hydrostor to take critical steps toward construction...

Hydrostor has received $4m funding to develop a 300-500MW Advanced Compressed Air Energy Storage (A-CAES) facility in Canada.

The funding will be used to complete essential engineering and planning, and enable Hydrostor to plan construction. 

The project will be modeled on Hydrostor’s commercially operating Goderich storage facility, providing up to 12 hours of energy storage.

The project has support from Natural Resources Canada’s Energy Innovation Program and Sustainable Development Technology Canada.

Hydrostor’s A-CAES system supports Canada’s green economic transition by designing, building, and operating emissions-free energy storage facilities, and employing people, suppliers, and technologies from the oil and gas sector.

The Honorable Seamus O’Regan, Jr. Minister of Natural Resources, said: “Investing in clean technology will lower emissions and increase our competitiveness. This is how we get to net zero by 2050.”

A-CAES has the potential to lower greenhouse gas emissions by enabling the transition to a cleaner and more flexible electricity grid. Specifically, the low-impact and cost-effective technology will reduce the use of fossil fuels and will provide reliable and bankable energy storage solutions for utilities and regulators, while integrating renewable energy for sustainable growth. 

Curtis VanWalleghem, Hydrostor’s Chief Executive Officer, said: “We are grateful for the federal government’s support of our long duration energy storage solution that is critical to enabling the clean energy transition. This made-in-Canada solution, with the support of NRCan and Sustainable Development Technology Canada, is ready to be widely deployed within Canada and globally to lower electricity rates and decarbonize the electricity sector."

The Rosamond A-CAES 500MW Project is under advanced development and targeting a 2024 launch. It is designed to turn California’s growing solar and wind resources into on-demand peak capacity while allowing for closure of fossil fuel generating stations.

Hydrostor closed US$37 million (C$49 million) in growth financing in September 2019. 

Share article