Nov 23, 2020

Hyundai and INEOS partner for hydrogen energy production

Hydrogen
Automotive
zerocarbon
Dominic Ellis
3 min
Companies sign MoU to explore opportunities for production and creating hydrogen value chain in Europe
Companies sign MoU to explore opportunities for production and creating hydrogen value chain in Europe...

Hyundai Motor Company and INEOS today signed an MoU to explore new opportunities to accelerate the global hydrogen economy.

Hyundai and INEOS will jointly investigate opportunities for the production and supply of hydrogen as well as the worldwide deployment of hydrogen applications and technologies. Both companies will initially seek to facilitate public and private sector projects focused on the development of a hydrogen value chain in Europe.

The agreement also includes the evaluation of Hyundai’s proprietary fuel cell system for the recently announced INEOS Grenadier 4x4 vehicle. This cooperation represents an important step in INEOS’ efforts to diversify its powertrain options at an early stage.

Hyundai’s proprietary modular fuel cell system, which evaluation vehicles will use, has already proven reliable in the Hyundai NEXO SUV (pictured), which is billed as 'the world’s first dedicated hydrogen-powered SUV'.

Hyundai is one of leading company in the field of fuel cell technology having started the world’s first mass production of fuel cell electric vehicles in 2013.

“INEOS’ move into the development of a fuel cell electric vehicle and hydrogen ecosystem marks yet another milestone towards sustainable and clean transportation,” said Saehoon Kim, Senior Vice President and Head of Fuel Cell Center at Hyundai Motor Company. 

“Hyundai believes this will provide an important low-carbon option across a wide range of sectors. We also hope our decades-long expertise in hydrogen fuel cell work in synergy with INEOS’ expertise in field of chemistry to realize the mass production of green hydrogen and fuel cells for the Grenadier.” 

Peter Williams Technology Director INEOS, said the agreement presents both companies with new opportunities to extend a leading role in the clean hydrogen economy. "Evaluating new production processes, technology and applications, combined with our existing capabilities puts us in a unique position to meet emerging demand for affordable, low-carbon energy sources and the needs of demanding 4x4 owners in the future," he said.

INEOS recently launched a new business to develop and build clean hydrogen capacity across Europe in support of the drive towards a zero-carbon future. The company currently produces 300,000 tons of hydrogen a year mainly as a by-product from its chemical manufacturing operations.

Through its subsidiary INOVYN, INEOS is Europe’s largest existing operator of electrolysis, the critical technology that uses renewable energy to produce hydrogen for power generation, transportation and industrial use. 

Its experience in storage and handling of hydrogen combined with its established know-how in electrolysis technology, puts INEOS in a unique position to drive progress towards a carbon-free future based on hydrogen.

In 2018, Hyundai Motor Group announced its mid- to long-term roadmap, Fuel Cell Vision 2030, to increase annual production of hydrogen fuel cell systems to 700,000 units by 2030.

Expensive hydrogen occupies niche

In a separate report published today, How Hydrogen Can Fuel The Energy Transition, S&P Global Ratings believes hydrogen can push the energy transition forward, but this would require coordinated policy, lower hydrogen production costs, and massive growth of renewables. 

Hydrogen has so far occupied a niche in the refining, chemicals, and ammonia fertilizer sectors since it is more expensive than conventional fuels: on an energy-equivalent basis, $2 per kilogram (/kg) of hydrogen equates to a gas price of $17.6 per million British thermal unit. 

"A truly hydrogen-based economy, in which hydrogen, not gas, is used to heat buildings and balance the power grid, for example, therefore appears out of reach, at least before 2030. 

"It would necessitate zero-carbon policies and renewables comprising at least 70%-80% of the power mix, considering that the most cost-efficient way to decarbonize is to replace coal- and gas-fired power with renewables," said S&P Global Ratings Head of Infrastructure Research Karl Nietvelt. 

Share article

May 13, 2021

Sakuu Corporation creates 3D printer for EV batteries

electricvehicles
SolidStateBatteries
Renewables
Dominic Ellis
4 min
Sakuu is set to enable high-volume production of 3D printed solid-state batteries for electric vehicles as more investment ploughs into SSB production

Sakuu Corporation has announced a new industrial-grade 3D printer for e-mobility batteries which it claims will unlock the mainstream adoption of electric vehicles.

Offering an industrial scale ‘local’ battery production capability, Sakuu believes the technology will provide increased manufacturer and consumer confidence. Sakuu’s Alpha Platform for its initial hardware offering will be available in Q4.

Backed by Japanese automotive parts supplier to major OEMs, Musashi Seimitsu, Sakuu is set to enable fast and high-volume production of 3D printed solid-state batteries (SSBs) that, compared with lithium-ion batteries, have the same capacity yet are half the size and almost a third lighter.

The company’s KeraCel-branded SSBs will also use around 30%-50% fewer materials – which can be sourced locally – to achieve the same energy levels as lithium-ion options, significantly reducing production costs. Sakuu anticipates the 3D printer’s attributes being easily transferable to a host of different applications in other industry sectors.

"For the e-mobility markets specifically, we believe this to be a landmark achievement, and one that could transform consumer adoption of electric vehicles,” said Robert Bagheri, Founder, CEO and chairman, Sakuu Corporation. “SSBs are a holy grail technology, but they are both very difficult and expensive to make. By harnessing the flexibility and efficiency-enhancing capabilities of our unique and scalable AM process, we’re enabling battery manufacturers and EV companies to overcome these fundamental pain points."

The ability to provide on-demand, localised production will create more efficient manufacturing operations and shorter supply chains, he added.

Sakuu will initially focus on the two-, three- and smaller four-wheel electric vehicle market for whom the company’s SSB proposition delivers an obvious and desirable combination of small form factor, low weight and improved capacity benefits. The agility of Sakuu’s AM process also means that customers can easily switch production to different battery types and sizes, as necessary, for example to achieve double the energy in the same space or the same energy in half the space.

Beyond energy storage, Sakuu’s development of print capability opens complex end device markets previously closed off to current 3D printing platforms. These include active components like sensors and electric motors for aerospace and automotive; power banks and heatsinks for consumer electronics; PH, temperature and pressure sensors within IoT; and pathogen detectors and microfluidic devices for medical, to name a few.

"As a cheaper, faster, local, customisable and more sustainable method of producing SSBs – which as a product deliver much higher performance attributes than currently available alternatives – the potential of our new platform offers tremendous opportunities to users within energy, as well as a multitude of other markets," said Bagheri.

Ongoing research and new funding collaborations

Omega Seiki, a part of Anglian Omega Group of companies, has partnered with New York-based company C4V to introduce SSBs for EVs and the renewable sector in India. As part of an MoU, the two companies are also looking at the manufacturing of SSBs in the country, according to reports.

Solid Power, which produces solid-state batteries for electric vehicles, recently announced a $130 million Series B investment round led by the BMW Group, Ford Motor Company and Volta Energy Technologies. Ford and the BMW Group have also expanded existing joint development agreements with Solid Power to secure all solid-state batteries for future EVs. Solid Power plans to begin producing automotive-scale batteries on the company's pilot production line in early 2022.

"Solid-state battery technology is important to the future of electric vehicles, and that's why we're investing directly," said Ted Miller, Ford's manager of Electrification Subsystems and Power Supply Research. "By simplifying the design of solid-state versus lithium-ion batteries, we'll be able to increase vehicle range, improve interior space and cargo volume, deliver lower costs and better value for customers and more efficiently integrate this kind of solid-state battery cell technology into existing lithium-ion cell production processes."

A subsidiary of Vingroup, Vietnam’s largest private company, Vinfast has signed an MoU with SSB manufacturer ProLogium - which picked up a bronze award at the recent Edison Awards - to accelerate commercialisation of batteries for EVs (click here).

Xin Li, Associate Professor of Materials Science, Harvard John A. Paulson School of Engineering and Applied Sciences, is designing an SSB for ultra-high performance EV applications. The ultimate goal is to design a battery "that outperforms internal combustion engines so electrical vehicles accelerate the transition from fossil-fuel-based energy to renewable energy," according to The Harvard Gazette.

The dramatic increase in EV numbers means that the potential battery market is huge. McKinsey projects that by 2040 battery demand from EVs produced in Europe will reach a total of 1,200GWh per year, which is enough for 80 gigafactories with an average capacity of 15GWh per year.

Share article