May 17, 2020

Xcel and NextEra Sign Deal for Low-Cost Wind Farm

Wind
Energy
Power
Xcel
Admin
2 min
To make wind farms more economical, Xcel Energy and NextEra Energy Resources sign a deal for a new low-cost wind farm.
For years now weve seen the banter go back and forth between policymakers, businessmen, and the media in regard to the economic viability of wind power...

For years now we’ve seen the banter go back and forth between policymakers, businessmen, and the media in regard to the economic viability of wind power as a utilities-scale energy provider.  Technological advances and government subsidies will surely bring down the bottom line in wind power development, but let’s not forget how significant a role business partnerships can play in achieving the same goal.  Xcel Energy and NextEra Energy Resources have signed a contract to develop a new low-cost 200 MW wind farm in Colorado.

According to Xcel, the arrangement will allow for some of the cheapest wind power in the company’s portfolio. "Our contract with NextEra Energy Resources is one of the lowest we've ever seen and results in a savings of nearly 40 percent for our customers," says David Eves, president and CEO of Public Service Co. of Colorado, an Xcel Energy company.

He adds, "The addition of this 200-megawatt wind farm demonstrates that renewable energy can compete on an economic basis with more traditional forms of generation fuel, like natural gas, and allows us to meet the state's Renewable Energy Standard at a very reasonable cost to our customers."

The project was originally bid in January 2009, but 2010 saw an opportunity to rebid at a significant cost-reduction, which will offer a dramatic savings to customers. 

SEE OTHER TOP STORIES IN THE WDM CONTENT NETWORK

Floating Wind Turbines Capture Deep Sea Power

Siemens Unveils Giant Lightweight Wind Turbine

Read the latest edition of Energy Digital!

The dramatic reduction in cost is the result of a slowing period in wind farm development resulting in a surplus of turbines in the American market.  The Colorado Public Utilities Commission’s confirmation of the market status ultimately led to the successful contract between Xcel and NextEra. 

The wind farm itself, dubbed the Limon Wind Energy Center, will consist of 125 turbines sitting atop 35,000 acres.  Construction will begin in early 2012 and completed later that year.  The addition of Limon will give Xcel Energy 1,943 MW of total installed capacity of wind power in Colorado.  

Share article

May 13, 2021

Sakuu Corporation creates 3D printer for EV batteries

electricvehicles
SolidStateBatteries
Renewables
Dominic Ellis
4 min
Sakuu is set to enable high-volume production of 3D printed solid-state batteries for electric vehicles as more investment ploughs into SSB production

Sakuu Corporation has announced a new industrial-grade 3D printer for e-mobility batteries which it claims will unlock the mainstream adoption of electric vehicles.

Offering an industrial scale ‘local’ battery production capability, Sakuu believes the technology will provide increased manufacturer and consumer confidence. Sakuu’s Alpha Platform for its initial hardware offering will be available in Q4.

Backed by Japanese automotive parts supplier to major OEMs, Musashi Seimitsu, Sakuu is set to enable fast and high-volume production of 3D printed solid-state batteries (SSBs) that, compared with lithium-ion batteries, have the same capacity yet are half the size and almost a third lighter.

The company’s KeraCel-branded SSBs will also use around 30%-50% fewer materials – which can be sourced locally – to achieve the same energy levels as lithium-ion options, significantly reducing production costs. Sakuu anticipates the 3D printer’s attributes being easily transferable to a host of different applications in other industry sectors.

"For the e-mobility markets specifically, we believe this to be a landmark achievement, and one that could transform consumer adoption of electric vehicles,” said Robert Bagheri, Founder, CEO and chairman, Sakuu Corporation. “SSBs are a holy grail technology, but they are both very difficult and expensive to make. By harnessing the flexibility and efficiency-enhancing capabilities of our unique and scalable AM process, we’re enabling battery manufacturers and EV companies to overcome these fundamental pain points."

The ability to provide on-demand, localised production will create more efficient manufacturing operations and shorter supply chains, he added.

Sakuu will initially focus on the two-, three- and smaller four-wheel electric vehicle market for whom the company’s SSB proposition delivers an obvious and desirable combination of small form factor, low weight and improved capacity benefits. The agility of Sakuu’s AM process also means that customers can easily switch production to different battery types and sizes, as necessary, for example to achieve double the energy in the same space or the same energy in half the space.

Beyond energy storage, Sakuu’s development of print capability opens complex end device markets previously closed off to current 3D printing platforms. These include active components like sensors and electric motors for aerospace and automotive; power banks and heatsinks for consumer electronics; PH, temperature and pressure sensors within IoT; and pathogen detectors and microfluidic devices for medical, to name a few.

"As a cheaper, faster, local, customisable and more sustainable method of producing SSBs – which as a product deliver much higher performance attributes than currently available alternatives – the potential of our new platform offers tremendous opportunities to users within energy, as well as a multitude of other markets," said Bagheri.

Ongoing research and new funding collaborations

Omega Seiki, a part of Anglian Omega Group of companies, has partnered with New York-based company C4V to introduce SSBs for EVs and the renewable sector in India. As part of an MoU, the two companies are also looking at the manufacturing of SSBs in the country, according to reports.

Solid Power, which produces solid-state batteries for electric vehicles, recently announced a $130 million Series B investment round led by the BMW Group, Ford Motor Company and Volta Energy Technologies. Ford and the BMW Group have also expanded existing joint development agreements with Solid Power to secure all solid-state batteries for future EVs. Solid Power plans to begin producing automotive-scale batteries on the company's pilot production line in early 2022.

"Solid-state battery technology is important to the future of electric vehicles, and that's why we're investing directly," said Ted Miller, Ford's manager of Electrification Subsystems and Power Supply Research. "By simplifying the design of solid-state versus lithium-ion batteries, we'll be able to increase vehicle range, improve interior space and cargo volume, deliver lower costs and better value for customers and more efficiently integrate this kind of solid-state battery cell technology into existing lithium-ion cell production processes."

A subsidiary of Vingroup, Vietnam’s largest private company, Vinfast has signed an MoU with SSB manufacturer ProLogium - which picked up a bronze award at the recent Edison Awards - to accelerate commercialisation of batteries for EVs (click here).

Xin Li, Associate Professor of Materials Science, Harvard John A. Paulson School of Engineering and Applied Sciences, is designing an SSB for ultra-high performance EV applications. The ultimate goal is to design a battery "that outperforms internal combustion engines so electrical vehicles accelerate the transition from fossil-fuel-based energy to renewable energy," according to The Harvard Gazette.

The dramatic increase in EV numbers means that the potential battery market is huge. McKinsey projects that by 2040 battery demand from EVs produced in Europe will reach a total of 1,200GWh per year, which is enough for 80 gigafactories with an average capacity of 15GWh per year.

Share article