May 17, 2020

Improvements in Waste Heat Recovery

energy digital
waste heat
waste heat recovery
3 min
energy, waste heat, waste heat recovery, energy retriever system, ERS, Harlequin Motors, battery storage, cooling, supplemental heat, internal combustion engines
Harlequin Motors has just received a US patent of its Energy Retriever System (ERS) that acts not only as a waste heat recovery unit, but als as a com...


Harlequin Motors has just received a US patent of its Energy Retriever System (ERS) that acts not only as a waste heat recovery unit, but als as a complete system offering cooling capabilities, supplemental heat (for cold operating environments) and battery storage options.

The Energy Retriever System operates on a simple yet elegant premise. All internal combustion engines produce heat, but waste most of it. The ERS system captures the waste heat and harnesses it to propel the vehicle and to power most of the electrical equipment. The heat is passed on to a gas that is compressed into a liquid until it reaches critical temperature. The resulting pressure from this process is used to power turbines that turn generators and alternators to produce electricity. This electricity is used to power motors that assist in propelling the vehicle, charge batteries and provide power to the vehicles ancillary systems.

The ERS can be adapted for use on all types of motorized land vehicles (especially military, municipal, semi-trucks, private cars and city/county operated vehicles), some buildings as well as all ships and motorized watercraft. It can also be retrofitted to fit existing engines under certain circumstances.

Known Commercial Use

Harlequin is aware of several other systems already on the market, none of which are capable of the Energy Recovery System efficiency. Additionally, most commercial systems require much more alterations of the engines, maintenance, monitoring during operation, higher cost of installation and a higher cost of operation. They are limited in the types of mediums available whereas the ERS is not. And in most cases they weigh more, use a less efficient means of absorbing heat, and require a greater warm up time as well.

Existing Waste Heat Recovery Systems

Of the technologies that are currently being developed for energy recovery applications, thermoelectric generators (TEG) and organic Rankin cycle (ORC) systems are two approaches receiving considerable individual attention. The use of TEGs in heat recovery applications has been a major theme in the development of the field since the 1990s. Combining these two approaches into a dual-cycle system for thermal energy recovery has been researched where each system can operate in a different temperature space. 


Mongolia's Mining Boom: Oyu Tolgoi and Tavan Tolgoi

This Valentine's Day: Red Roses and Blood Diamonds?

February's issue of Energy Digital has gone live!

The ERS can work effectively over a broader range of temperatures, while TEGs can work effectively only across narrow temperature ranges. In addition most current systems try to recover heat at the very end of the engine exhaust point. The ERS will absorb heat all along the exhaust path from the engine and conclude at the engine exhaust. The ERS also works to reduce the load on the engine. All of the system components work to maximize the total waste heat recovered and maximize the overall efficiency.

The Inventor

Paul Corley's lifelong work with engines has helped to build his understanding of waste heat and methods to recover it. He spent 26 years as an officer piloting, navigating, engineering, and maintaining a variety of fresh-water and open-ocean vessels from tug boats to ocean going cargo vessels and over 25 years studying, building, maintaining and improving a variety of internal combustion engines. He is an experienced automobile mechanic who has built and rebuilt a number of classic sports cars and racing automobiles.

Mr. Corley is willing and eager to work with the licensee, to manufacture and implement the system, and eventually take it to the market. Mr. Corley would like very much to be involved as a collaborator, in order to see the project be successful, and to eventually see the ERS used extensively across the world.

For more information contact Martin Kamerman [email protected]


Edited by Carin Hall




Share article

Jul 30, 2021

Major move forward for UK’s nascent marine energy sector

3 min
The UK’s nascent marine energy sector starts exporting electricity to the grid as the most powerful tidal turbine in the world begins to generate power

Although the industry is small and the technologies are limited, marine-based energy systems look to be taking off as “the world’s most powerful tidal turbine” begins grid-connected power generation at the European Marine Energy Centre

At around 74 metres long, the turbine single-handedly holds the potential to supply the annual electricity demand to approximately 2,000 homes within the UK and offset 2,200 tonnes of CO2 per year.

Orbital Marine Power, a privately held Scottish-based company, announced the turbine is set to operate for around 15 years in the waters surrounding Orkney, Scotland, where the 2-megawatt O2 turbine weighing around 680 metric tons will be linked to a local on-land electricity network via a subsea cable. 

How optimistic is the outlook for the UK’s turbine bid?

Described as a “major milestone for O2” by CEO of Orbital Marine Power Andrew Scott, the turbine will also supply additional power to generate ‘green hydrogen’ through the use of a land-based electrolyser in the hopes it will demonstrate the “decarbonisation of wider energy requirements.” 

“Our vision is that this project is the trigger to the harnessing of tidal stream resources around the world to play a role in tackling climate change whilst creating a new, low-carbon industrial sector,” says Scott in a statement. 

The Scottish Government has awarded £3.4 million through the Saltire Tidal Energy Challenge Fund to support the project’s construction, while public lenders also contributed to the financial requirements of the tidal turbine through the ethical investment platform Abundance Investment.

“The deployment of Orbital Marine Power’s O2, the world’s most powerful tidal turbine, is a proud moment for Scotland and a significant milestone in our journey to net zero,” says Michael Matheson, the Cabinet Secretary for Net-Zero, Energy and Transport for the Scottish Government. 

“With our abundant natural resources, expertise and ambition, Scotland is ideally placed to harness the enormous global market for marine energy whilst helping deliver a net-zero economy.

“That’s why the Scottish Government has consistently supported the marine energy sector for over 10 years.”

However, Orbital Marine CEO Scott believes there’s potential to commercialise the technology being used in the project with the prospect of working towards more efficient and advanced marine energy projects in the future. 

We believe pioneering our vision in the UK can deliver on a broad spectrum of political initiatives across net-zero, levelling up and building back better at the same time as demonstrating global leadership in the area of low carbon innovation that is essential to creating a more sustainable future for the generations to come.” 

The UK’s growing marine energy endeavours

This latest tidal turbine project isn’t a first for marine energy in the UK. The Port of London Authority permitted the River Thames to become a temporary home for trials into tidal energy technology and, more recently, a research project spanning the course of a year is set to focus on the potential tidal, wave, and floating wind technology holds for the future efficiency of renewable energy. The research is due to take place off of the Southwest coast of England on the Isles of Scilly

Share article