Apr 21, 2021

The role of satellite in smart grid development

Inmarsat
satellite
Utilities
Steven Tompkins
4 min
Steven Tompkins, Director of Sector Development at Inmarsat, explains the benefits of cost-effective satellite technologies in smart grid applications

The utilities sector has become a pioneer of digital transformation in recent years, driven by a need to monitor, manage, automate and ultimately improve the quality and reliability of energy being supplied to consumers. Satellite connectivity is playing an increasingly important role in this move, at different stages of the distribution process. 

Ever more advanced technologies are being deployed across utilities networks in the march to build ‘smarter’ grids. Innovations in the use of centralised automated reclosers, advanced metering infrastructure (AMI) and the increasing automation of substations, in particular, continue to drive the sector forwards.

The traditional mix of connectivity technologies that have underpinned the expansion of smart grid applications over the last two decades – largely based on a combination of radio and cellular networks – requires updating. Vast areas of networks still have coverage dark spots, where terrestrial connectivity fails to provide the communications backbone needed to build efficient, reliable and secure smart grids. Additionally the need to have a failsafe in the case of a temporary outages with the main connectivity method means satellite can provide a highly reliable backup.

Satellite as a critical tool 

In the past, satellite-enabled solutions that provide ‘always on’ connectivity for utilities were often deemed cost-prohibitive or overly reliant on bulky hardware, but much has changed in recent years. The latest satellite technologies ensure ubiquitous connectivity in a highly cost-effective way, in addition to working as a highly reliable backup comms system when terrestrial connectivity networks fail.

Utilities companies need to meet fluctuations in consumer demand, to dynamically respond to surges, keeping downtime to an absolute minimum and providing a high level of service that improves people’s lives. These challenges are compounded by the shift towards a distributed-generation, low carbon economy that is transforming how power is both being produced and consumed by end users worldwide.

While the traditional electrical grid was a ‘one-way’ system, ‘smarter’ two-way grids give distributors and suppliers heads-up feedback on parameters such as system outages and local variations in electrical use. This provides grid managers the data needed to optimise the performance of the network, ensuring they can accommodate peak loads and anticipate any disturbances in supply. 

Changing the perception of satellite

Of those three core applications referenced above, it is arguable that centralised automated reclosers are the most important smart grid application, as they allow utility companies to sense and interrupt currents in the event of a fault, giving them the tools to automatically reconfigure the network to isolate faults and restore supply. 

All of these technologies – enabled by supervisory and control (SCADA) systems - are making field data more accessible and reliable than ever before, helping grid managers to make smarter, more informed decisions: enhancing visibility over metering and grid networks, ensuring fewer and shorter outages, reducing peak consumption by shifting demand loads, optimising electricity generation and distribution and keeping maintenance costs to a minimum. 

As today’s utility companies rely on these technologies to make the distribution smart grid more flexible, stable, resilient and secure, the same qualities must be true of their communications networks. In this context, the cost and reliability limitations of traditional radio and cellular-based technologies in enabling remote SCADA systems are becoming increasingly clear. Simply put, an unreliable communications backbone (particularly in remote and rural areas) significantly limits a grid managers ability to pinpoint malfunctions and dynamically respond to power outages. 

A lack of available and reliable terrestrial communication is a huge barrier to enhancing the capabilities of your network and making the most of smart grid applications and solutions. Whether it is smart meters or digital sensors and switches, such infrastructure advancements cannot be optimised (or are simply not possible) without reliable connectivity.

This is where the latest cost-effective satellite technologies and robust, reliable terminals are ideal for backhauling data from smart grid applications installed anywhere in the power grid, providing grid managers with an easy to integrate, real-time, IP-based connectivity service and giving them greater command and control across their entire network. 

At this point, it’s important that utilities companies understand the differences and limitations of different satellite services. VSAT satellite systems, for example, work with bulky terminals that rely on a high power draw and can often cease working in the event of a power cut. Plus, they often lose connection if adverse weather conditions such as cloud or wind interfere with the terminals.

In contrast, Inmarsat’s BGAN M2M service operates on Inmarsat’s L-band network, which was optimised for government and emergency applications and ranks amongst the most reliable forms of satellite connectivity. Moreover, the BGAN M2M service features robust and compact terminals that are smaller than a typical laptop, are easy to install and can withstand the harshest environmental conditions, with a lifespan of up to ten years or more and low monthly data usage costs. 

This is why Inmarsat’s BGAN M2M service is already used on over ten thousand reclosers across the world and has been trusted as the industry standard, providing utilities companies the necessary cost-effective, flexible, stable and secure communications backbone to underpin the latest smart grid innovations and developments of both today and tomorrow.

 

Share article

Jul 27, 2021

Scala Data Centers sets 2033 renewables goal

datacenters
Energy
Sustainability
Renewables
Dominic Ellis
3 min
Scala Data Centers is pledging to provide its Brazil customers with 100% renewable energy by 2033 - as renewables activity steps up in Latin America

Scala Data Centers is pledging to provide its Brazil customers with 100% renewable energy by 2033.

The strategic goal follows the signing of a Power Purchase Agreement (PPA) with ENGIE Brasil Energia, the Brazilian's largest private energy producer. The contract guarantees the supply of more than 1,600 GWh of clean energy in 12 years, a volume sufficient to supply, for one year, a city of around 700,000 people.

Scala Data Centers is a sustainable hyperscale data center platform, founded by DigitalBridge.

Marcos Peigo, co-founder and CEO of Scala, said the agreement with ENGIE reinforces the company's non-negotiable commitment to base its operational growth on fully sustainable premises. "We focus on strategic partnerships that can scale and maintain our operation with the lowest possible environmental impact, without giving up the high quality and competitiveness that are recognised differentials of our company", the executive said.

Eduardo Sattamini, CEO of ENGIE Brasil Energia, added that offering solutions to decarbonise its customers' operations is in line with ENGIE's purpose of acting to accelerate the energy transition towards a carbon neutral society. "Our partnership with Scala demonstrates the importance of sustainability as an added value for business prosperity, in harmony with the future of people and the planet" he said.

Data from the International Energy Agency (IEA) state that, in the last five years, 50% of the PPAs contracted around the world came from leading global technology companies.

Since 2007, Google has been using renewable energy and managed, 10 years later, to zero its global carbon emissions. More recently, Amazon has committed to zero carbon emissions by 2040 and to use 100% renewable energy by 2030. Oracle has expanded its commitment to sustainability, promising to leverage its global operations using 100% renewable energy until 2025.

Peigo hopes that its "leading role" can inspire other Latin American companies to follow the same path.

In regards to the UN’s 7th Sustainable Development Goal (Ensure access to affordable, reliable, sustainable and modern energy for all), Brazil’s energy policies have been very effective in meeting world’s most urgent energy challenges, according to Climate Scorecard.

Firstly, access to electricity across the country is almost universal and the electricity sector is the largest in South America. The power sector in Brazil serves more than 50 million customers, granting 97% of the country’s households’ reliable electricity.

Renewables compose almost 45% of Brazil’s primary energy demand, making it one of the least carbon-intensive globally, and its national grid is made up of almost 80% from renewable sources. A large part of its renewable resources come from biofuels and hydro.

 


Atlas Renewable Energy, along with Unipar, a leader in chlorine, chlorides, and PVC in South America, recently signed a large-scale solar energy PPA in Brazil. The clean solar energy supply will be generated through Atlas Renewable Energy's Lar do Sol – Casablanca II photovoltaic plant in Pirapora, State of Minas Gerais.

"The adoption of renewables is becoming a staple of good corporate responsibility and we at Atlas offer a unique opportunity for large energy consumers to clean their energy matrix and at the same time be sponsors of the social and environmental programs we develop to uplift the communities where we operate," said Luis Pita, General Manager of Atlas Renewable Energy for Brazil. 

Mauricio Russomanno, CEO at Unipar, added that the total amount of generated energy destined to Unipar will be enough to produce chlorine for water treatment to over 60 million people.

Share article