Jun 19, 2020

Utilities turn to artificial intelligence

Sharper Shape
AI
Drones
Energy
Jaro Uljanovs, Lead AI Develop...
5 min
Sharper Shape
How AI and machine learning algorithms redefine utility inspections as society faces this pandemic...

Artificial intelligence (AI) boasts a wide range of potential applications, across nearly every industry imaginable — healthcare, automotive, retail, even fast food.

But it is the utility industry where AI and machine learning (ML) are beginning to demonstrate some of their most impactful effects on many aspects of the business. Power companies are increasingly leaning on AI to improve their electricity delivery an– in places like the Amazon and California – prevent potential wildfires through drone management software and vegetation management. In a post-COVID world where a reduced on-site workforce is quickly becoming the norm, AI is actually enhancing human jobs.

From data collection and analysis to the presentation of actionable insights, AI and ML algorithms are quickly redefining how utility companies manage their electric infrastructure.

Consolidating and classifying data

Utility companies oversee massive infrastructure networks, comprising poles, conductors, substations. Transmission and distribution lines which contain these crucial components span thousands of miles. Vegetation management around this key infrastructure must also be monitored, as it presents a danger of fire or outage.

Taking a comprehensive snapshot of these assets means utilizing a variety of different sensors for powerline inspections. These sensors include light detection and ranging (LiDAR), colour (RGB), hyperspectral and thermal imagery.

This allows the drone mapping software to capture everything — from vegetation proximity to infrastructure assets, to individual components (such as insulators on transformers) and their operational integrity to hot spots indicating potential fire risks.

That is a lot of data to capture, catalogue and process. And there are a lot of individual elements within that data — even in just one image — to pinpoint and classify, let alone do so accurately. Classifying billions of data points across all those sensors is an impossibly time-consuming task to do manually.

AI and ML tools can accomplish that same work — scanning thousands of images collected across thousands of miles of utility infrastructure — in seconds. LiDAR point cloud segmentation can detect conductors (quite a difficult component-type to segment) with an accuracy of over 95% for each individual point, while hyperspectral image segmentation can identify vegetation species with an accuracy of up to 99%.

More than that, when paired with drone sensors, these algorithms can also improve the upfront data collection. AI and ML tools help to adjust the sensor systems positioning in real-time. In the event that a signal is lost or the drone veers slightly away from its inspection flight path, an EDGE AI algorithm running on the professional drone or pilot hardware can help the drone to readjust its focus through object detection, or avoid collision through onboard collision avoidance

By helping to readjust the sensors’ bearings while in flight, AI not only ensures more accurate data collection but guarantees that the flight doesn’t need to be repeated or prematurely ended because of inaccurate data collection, saving valuable time and resources. ML techniques can spot any faults in the sensors or the drone’s flight path while in the air, recalibrating as needed and identifying individual elements within the data as it comes through the sensor’s video feed.

Breaking down silos to create a holistic data approach

Key to all of this is eliminating the silos that tend to naturally build up between different data segments. In the utility inspection space, asset management, and vegetation management, different sensors and so on all produce their own disparate, walled-off sets of data.

When data is kept siloed like this, it becomes unnecessarily difficult, for teams to derive company-wide insights or conclusions from the information being collected. And what good is all that data if it can’t be used to check against itself and compliment other sets of data?

Good data management cannot exist in a piecemeal approach. It needs to be holistic, and AI provides the impetus to make that happen. AI provides a central resource for pooling all these data sources together, making it easier for data analysis for potential problems — like wildfire-prone vegetation or damaged components. When these issues are collected in one system, it becomes much easier to identify faults and resolve them — and do so far faster than it would be to manually sift through countless images of poles or vegetation maps.

In spite of all the common concerns about AI eliminating work for human beings, at utility companies AI actually enhances the role that people have to play in the network and powerline inspection process. Because the AI is the tool that carries out the data analysis, it is not something that is dependent on the potentially biased expertise of a professional human inspector, nor is it prone to fatigue and the anomalous results that can come from that, rather the drone inspection software. But at the same time, AI cannot do everything itself. It is a method for presenting clearer, more accurate and more actionable information for people to then act on with their own judgment.

There are a lot of easy-to-make assumptions, both good and bad, about AI. With communities beginning to emerge from lockdown and social distancing heralding a marked shift in day to day life, what AI really means for the utility industry is less reliance on manual inspections and a more efficient and effective tool for providing the right information about a power company’s infrastructure — its transmission and distributions lines, its poles, and its nearby vegetation — into the hands of its key decision-makers.

This article was contributed by Jaro Uljanovs, Lead AI Developer and Data Scientist, Sharper Shape

Share article

Apr 16, 2021

Hydrostor receives $4m funding for A-CAES facility in Canada

energystorage
Canada
Netzero
Dominic Ellis
2 min
The funding will be used to complete essential engineering and planning, and enable Hydrostor to take critical steps toward construction
The funding will be used to complete essential engineering and planning, and enable Hydrostor to take critical steps toward construction...

Hydrostor has received $4m funding to develop a 300-500MW Advanced Compressed Air Energy Storage (A-CAES) facility in Canada.

The funding will be used to complete essential engineering and planning, and enable Hydrostor to plan construction. 

The project will be modeled on Hydrostor’s commercially operating Goderich storage facility, providing up to 12 hours of energy storage.

The project has support from Natural Resources Canada’s Energy Innovation Program and Sustainable Development Technology Canada.

Hydrostor’s A-CAES system supports Canada’s green economic transition by designing, building, and operating emissions-free energy storage facilities, and employing people, suppliers, and technologies from the oil and gas sector.

The Honorable Seamus O’Regan, Jr. Minister of Natural Resources, said: “Investing in clean technology will lower emissions and increase our competitiveness. This is how we get to net zero by 2050.”

A-CAES has the potential to lower greenhouse gas emissions by enabling the transition to a cleaner and more flexible electricity grid. Specifically, the low-impact and cost-effective technology will reduce the use of fossil fuels and will provide reliable and bankable energy storage solutions for utilities and regulators, while integrating renewable energy for sustainable growth. 

Curtis VanWalleghem, Hydrostor’s Chief Executive Officer, said: “We are grateful for the federal government’s support of our long duration energy storage solution that is critical to enabling the clean energy transition. This made-in-Canada solution, with the support of NRCan and Sustainable Development Technology Canada, is ready to be widely deployed within Canada and globally to lower electricity rates and decarbonize the electricity sector."

The Rosamond A-CAES 500MW Project is under advanced development and targeting a 2024 launch. It is designed to turn California’s growing solar and wind resources into on-demand peak capacity while allowing for closure of fossil fuel generating stations.

Hydrostor closed US$37 million (C$49 million) in growth financing in September 2019. 

Share article