May 17, 2020

Japanese Breakthrough in Wind Turbine Design

energy digital
wind lens
wind turbine rim
Wind Energy
Admin
4 min
A revolutionary design to triple the output of wind turbines and compete with nuclear energy
In light of recent events, Japan has been urged to pay more attention to renewable energy sources. Coincidently, in the same month as one of the worl...

 

 

In light of recent events, Japan has been urged to pay more attention to renewable energy sources. Coincidently, in the same month as one of the world's worst nuclear crises devastated Fukushima, an incredibly innovative wind turbine system revealed itself on Kyushu University's campus for field testing. With a promise to generate two to three times the power of traditional models, the new turbine designs exemplify the potential for a cleaner energy future in Japan and around the world, removed from the dangers of nuclear power plants.

While energy from wind turbines currently accounts for less than one percent of total power generated in Japan, the new breakthrough in design provides ample reason to ramp up production. Called the 'Windlens,' Yuji Ohya, a professor of renewable energy dynamics and applied mechanics, and his team at Kyushu University have created a series of turbines that could make the cost of wind power less than coal and nuclear energy.

The two major concerning issues with traditional turbines have been their general inefficiency and intolerable noise. However, Kyushu's researchers found that attaching an inward curving ring around the perimeter of a turbine's blades increases the focus of airflow faster through the blade zones at two to three times the speed as before. An improvement in safety from covering the outer edges of the blades and a reduction of the dreaded noise pollution of older models is just a bonus.

SEE OTHER TOP STORIES IN THE ENERGY DIGITAL CONTENT NETWORK

Texas Spearheads Wind Power

WindMade Label to Build Business for Companies

November's issue of Energy Digital has gone live!

To take advantage of Japan's coastal wind power potential, the Kyushu team has also designed a hexagonal-shaped base for the turbines that would be low in cost, but still strong enough to endure marine conditions. In addition to overall structural improvement of the traditional turbines, the bases would also make it easier to link other turbines at sea together and enlarge platforms.

Hakata-bay off-shore wind farm.jpg

“I believe that offshore 'wind lens' turbines will become a reliable source of energy if safety is ensured and the cost is cut to float them stably on vast sea surfaces,” said Prof. Yusaku Kyozuka on the research team at Kyushu University.

Can others in the industry easily adopt a similar design to make older turbines more efficient?

Although the 'wind lens' appears simple, it consists of complex technological planning and extensive field testing. Poorly engineered models that have failed in the past have left a bad impression on many users and policy makers, hurting the image of the entire industry, according to Chris Takashi Matsuuar, a collaborator working in the UK to promote the Windlens globally.

"Therefore, we will develop a whole turbine system of our own, including not only the lens shroud, but also the blades, generator, controller, etc.," he said. "The best way [to move forward] is to replace old turbines as a whole with our new smart Windlens system."

What is the current stage of testing?

Several types of turbines have been designed with different power ratings and many are still undergoing testing. As of March this year, two units of turbines with a capacity of 70 to 100 KW (blade diameter of 12.8) have been installed on campus at Kyushu University for field testing.

The more widely used, smaller units with a capacity of 3 to 5 KW (blade diameter of 2.5 meters) have been picked up by some industrial users and installed in many locations, including the Gansu Province of China for a desert irrigation project and several coastal areas in Fukuoka City, Japan. The floating Windlens systems have been tested in a water tank at an in-house laboratory at the University, but actual field test installations for the first marine turbines are almost ready and should take place sometime this month, Matsuuar hopes.

Hexagonic bases are designed to be cost efficient, durable and easy to maneuver.jpg

However, field tests take time and it could be several months to two years before the Windlens makes a significant impact on Japan's energy system. The good news is the "Windlens has already attracted great expectations globally and will make a huge, real impact for the power generation in not only Japan, but also in the U.K., E.U., U.S., Canada and other parts of the world, as soon as the field test gives good results on the designed performance and safety," said Matsuuar.

DOWNLOAD THE ENERGY DIGITAL IPAD APP

Share article

Jul 28, 2021

Industry movement with heat decarbonisation

Gas
Renewables
Heatnetworks
Decarbonisation
Dominic Ellis
6 min
As SGN and Vital Energi announce 50:50 joint venture, the heat decarbonisation market is seeing some welcome movement

It is estimated that the heat network market requires approximately £30 billion of investment by 2050 to meet the UK Government’s net zero targets, and the decarbonisation of heat has been highlighted as a particular challenge.

The Climate Change Committee’s Sixth Carbon Budget states the UK should target 20% of UK heat demand through low-carbon heat networks by 2050 - but as with most discussions surrounding mass decarbonisation, even reaching that target won't be an easy task. In the UK approximately 40% of energy consumption and 20% of GHG emissions are due to the heating and hot water supply for buildings.

The International Energy Agency (IEA) estimate that globally, around half of all energy consumption is used for providing heat, mainly for homes and industry.

Source: Heat Trust

This week saw some positive movement, however, with gas distribution company SGN and UK renewable energy solutions provider Vital Energi announcing a 50:50 joint venture, which will create an Energy Services Company (ESCO) representing utility infrastructure and heat network providers. 

This includes delivery of heat to developments planned by SGN’s property arm, SGN Place, and the local vicinities where there is a demand for low-carbon heat.

The objective is to supply new and existing residential, industrial and commercial facilities and development activity is already underway for two projects in Scotland and the South East, with another 20 in the pipeline. SGN is looking to develop alternative heat solutions alongside its core gas distribution business and expand into the growing district heating market, recognising the future of heat is likely to include a mix of technological solutions and energy sources.

Vital Energi is seeking to expand into asset ownership opportunities to complement its core design, build and operations businesses. The complementary skillsets of both organisations will offer a compelling proposition for developers, commercial and industrial users and public sector bodies seeking low-carbon heat solutions.

SGN’s Director of Commercial Services and Investments Marcus Hunt said: “Heat networks are likely to play an increasing role in the delivery of UK heat in the context of net zero. The creation of this joint venture with market-leading Vital Energi enables us to build a presence in this emerging market, delivering new heat infrastructure and supporting decarbonisation.”

Nick Gosling, Chief Strategy Officer at Vital Energi, said: “Combining the resources, expertise and know-how of both organisations will allow us to play a major role in delivering the UK’s transition to low and zero-carbon heat.”

In March, the European Marine Energy Centre (EMEC) starting collaborating with Highlands and Islands Airports Limited (HIAL) to decarbonise heat and power at Kirkwall Airport through green hydrogen technology. 2G Energy was selected to deliver a CHP plant which generates heat and electricity from 100% hydrogen.

Heat decarbonisation options 

The Energy & Climate Intelligence Unit (ECIU) highlights the following options for decarbonising heating. 

Electrification

Use renewable electricity to generate heat in the home. As power sector emissions fall, emissions associated with electric heating are decreasing rapidly.

Low carbon gases

Replace natural gas that most homes use for heating with hydrogen, which releases energy but not carbon dioxide, the only waste product is water. Biomethane is also an option as it produces less carbon than natural gas over a full lifecycle.

For hydrogen to work, the pipes in the national gas grid would need to be replaced and home boilers would need to be adapted or changed. This is possible but could incur considerable cost. 

Biomethane is chemically identical to methane from natural gas, so is suited to existing infrastructure and appliances. It is unlikely, however, that it can be produced in sufficient quantities to replace fossil gas entirely.

Hybrids

A hybrid system combining both electrification and hydrogen is a third option. Here, heat pumps could be used to meet the majority of heat demand, with a (low carbon) gas boiler taking over in extremely cold weather. Advantages of this approach include helping establish a market for heat pumps while hydrogen is developed to displace natural gas in the hybrid system eventually, and the ability to call on hydrogen when heat demand is at its very highest.

Heat networks

Heat networks connect a central heat source to a number of buildings via a series of underground hot water pipes, and are popular in countries such as Denmark, where heat networks supply 63% of households. The Government expects the heat networks market in the UK to grow quickly to supply up to 20% of heat demand over the next decade or so, investing £320 million into its flagship Heat Networks Investment Project to help get this underway.

Heat networks work particularly well in built-up urban areas or industrial clusters where there is a large and concentrated demand for heat. Over time, it is thought that if the central heat source can be low carbon, then there is the opportunity to ensure that multiple homes and buildings are decarbonised at once.

Biomass

Biomass can be used to reduce emissions when used instead of more polluting fuels like oil in off gas grid properties. Support for biomass boilers has been available since 2011 via the Renewable Heat Incentive (RHI), but take-up has been low.

Supply constraints also restrict the role that biomass – burning solid material such as wood – can play. In any case, according to the Committee on Climate Change, this resource may be better used in other sectors of the economy such as construction, where it provides carbon storage without the need for CCS and reduces demand for carbon-intensive materials such as steel and cement.

The Energy Transitions Commission (ETC)'s latest report sets out how rapidly increasing demand for bioresources could outstrip sustainable supply, undermining climate mitigation efforts and harming biodiversity, unless alternative zero-carbon options are rapidly scaled-up and use of bioresources carefully prioritised.

"Alternative zero-carbon solutions, such as clean electrification or hydrogen, must be developed rapidly to lessen the need for bio-based solutions," it states.

The overall decarbonisation of industry is another major challenge, especially among four sectors that contribute 45 percent of CO2 emissions: cement, steel, ammonia, and ethylene, according to a McKinsey report. 

The process demands reimagining production processes from scratch and redesigning existing sites with costly rebuilds or retrofits. Furthermore, companies that adopt low-carbon production processes will see a short- to mid-term increase in cost, ultimately placing them at an economic disadvantage in a competitive global commodities market.

Next steps

Ken Hunnisett is Project Director for the Heat Network Investment Project (HNIP)’s delivery partner Triple Point, which is the delivery partner for the government's Heat Network Investment Project, which is responsible for investing up to £320million in strategic, low-carbon heat network projects across England and Wales.

He is calling for the urgent need to invest in the development of new heating infrastructure to support the nation’s decarbonisation effort. So far £165m of HNIP funds have prompted £421m CAPEX, providing more green jobs as the UK economy eases from the lows sustained from the pandemic.  

Decarbonising the UK's heating infrastructure is critical if we are to reach our net-zero goals and it’s crucial that progress is made in this decisive decade, he added. 

"Heat networks are a part of the lowest-cost pathway to decarbonising our homes and workplaces in the future but are also the bit of the jigsaw that we can be putting into place now," he said. "Penetration into the UK market is still low, despite heat representing 37% of UK greenhouse gas emissions, the largest single contributor by some way. Funding needs to be urgently directed towards reducing the environmental impact of the residential sector, particularly given the slow pace of the decline in residential emissions in comparison to those of business and transport."

Currently, just 3% of UK buildings are serviced by heat networks. "Further investment in this industry, using public and private funds, will not only drive wider sustainability targets but will boost the economy by providing more green jobs as the country emerges from the pandemic," he said.

Share article