Apr 12, 2021

ScottishPower submits plans for UK's largest electrolyser

Hydrogen
Renewables
scotland
UK
Dominic Ellis
3 min
The 20MW electrolyser will be the key component of a green hydrogen facility close to ScottishPower’s Whitelee windfarm
The 20MW electrolyser will be the key component of a green hydrogen facility close to ScottishPower’s Whitelee windfarm...

ScottishPower has submitted a planning application to deliver the UK’s largest electrolyser which will be the key component of a green hydrogen facility located close to its Whitelee windfarm. 

Alongside the 20MW electrolyser, the application also includes proposals for a combined solar and battery energy storage scheme - up to 40MW and 50MW respectively - to power the electrolyser. They will be installed about 5km west of Lochgoin Reservoir and next to the existing Whitelee Extension substation.

The submission marks an important step for Green Hydrogen for Scotland, a partnership between ScottishPower, BOC and ITM Power, to create green hydrogen production facilities with clusters of refuelling stations across Scotland.

The proposed green hydrogen project will be engineered and operated by BOC, using wind and solar power produced by ScottishPower Renewables, and the electrolyser will be delivered by ITM Power. The project aims to supply hydrogen to the commercial market before 2023.

Green Hydrogen for Glasgow aims to provide carbon-free transport and clean air for communities across Glasgow as well as helping support industrial hydrogen demand in the region. The city, set to host the United Nations 26th Climate Change Conference, COP26, later this year, aims to become the first net zero city in the UK by 2030.   

Barry Carruthers, ScottishPower’s Hydrogen Director, said: “With all eyes set to be on Glasgow later this year as the city hosts the UN’s 26th climate change conference, COP26, it’s fantastic to be making this next important step towards delivering green hydrogen for Glasgow.

“Whitelee keeps breaking barriers, first the UK’s largest onshore windfarm, and soon to be home to the UK’s largest electrolyser. The site has played a vital role in helping the UK to decarbonise and we look forward to delivering another vital form of zero carbon energy generation at the site to help Glasgow and Scotland achieve their net zero goals.”

He added green hydrogen has a vital role to play in Scotland and the wider UK’s journey to Net Zero emissions, providing a sustainable energy source that can provide clean, renewable energy for industries, heavy transport and companies for future decades.

Green hydrogen is a zero carbon energy source which can be used by industries and companies that cannot fully electrify their operations to help them lower their emissions, for example, heavy duty transport like buses and bin lorries.

The technology gets its name from the green power source, normally wind or solar, used to power an electrolyser to split water into its core elements; hydrogen and oxygen gas. The hydrogen can then be stored and transported for use as needed.

The green hydrogen facility at Whitelee, the UK’s largest onshore windfarm, will house a 20MW electrolyser and would be able to produce up to 8 tonnes of green hydrogen per day, roughly equivalent to fuelling over 550 buses to travel from Glasgow to Edinburgh and back again each day.

Graham Cooley, CEO ITM Power, said it marks an exciting milestone based on market development for green hydrogen for the city of Glasgow, that will see the UK’s largest electrolyser deployment to date being realised in Scotland.

Mark Griffin, Hydrogen Market Development Manager for Clean Fuels at BOC said: “The scale of this project demonstrates the growing demand for clean hydrogen and as a member of the Green Hydrogen for Scotland partnership, we’re delighted to bring our hydrogen mobility and refuelling project expertise to help deliver a ground-breaking facility in Glasgow.”

The hydrogen production facility could support Glasgow City Council as well as surrounding local authorities and industries in their ambitions to create a zero emissions vehicle fleet, using only electric and hydrogen-powered vehicles by the end of 2029.

ScottishPower expects a decision on the planning application in autumn.

The UK recently announced a £3 million investment to develop the Tees Valley hydrogen transport hub (click here). 

Share article

Jul 28, 2021

Industry movement with heat decarbonisation

Gas
Renewables
Heatnetworks
Decarbonisation
Dominic Ellis
6 min
As SGN and Vital Energi announce 50:50 joint venture, the heat decarbonisation market is seeing some welcome movement

It is estimated that the heat network market requires approximately £30 billion of investment by 2050 to meet the UK Government’s net zero targets, and the decarbonisation of heat has been highlighted as a particular challenge.

The Climate Change Committee’s Sixth Carbon Budget states the UK should target 20% of UK heat demand through low-carbon heat networks by 2050 - but as with most discussions surrounding mass decarbonisation, even reaching that target won't be an easy task. In the UK approximately 40% of energy consumption and 20% of GHG emissions are due to the heating and hot water supply for buildings.

The International Energy Agency (IEA) estimate that globally, around half of all energy consumption is used for providing heat, mainly for homes and industry.

Source: Heat Trust

This week saw some positive movement, however, with gas distribution company SGN and UK renewable energy solutions provider Vital Energi announcing a 50:50 joint venture, which will create an Energy Services Company (ESCO) representing utility infrastructure and heat network providers. 

This includes delivery of heat to developments planned by SGN’s property arm, SGN Place, and the local vicinities where there is a demand for low-carbon heat.

The objective is to supply new and existing residential, industrial and commercial facilities and development activity is already underway for two projects in Scotland and the South East, with another 20 in the pipeline. SGN is looking to develop alternative heat solutions alongside its core gas distribution business and expand into the growing district heating market, recognising the future of heat is likely to include a mix of technological solutions and energy sources.

Vital Energi is seeking to expand into asset ownership opportunities to complement its core design, build and operations businesses. The complementary skillsets of both organisations will offer a compelling proposition for developers, commercial and industrial users and public sector bodies seeking low-carbon heat solutions.

SGN’s Director of Commercial Services and Investments Marcus Hunt said: “Heat networks are likely to play an increasing role in the delivery of UK heat in the context of net zero. The creation of this joint venture with market-leading Vital Energi enables us to build a presence in this emerging market, delivering new heat infrastructure and supporting decarbonisation.”

Nick Gosling, Chief Strategy Officer at Vital Energi, said: “Combining the resources, expertise and know-how of both organisations will allow us to play a major role in delivering the UK’s transition to low and zero-carbon heat.”

In March, the European Marine Energy Centre (EMEC) starting collaborating with Highlands and Islands Airports Limited (HIAL) to decarbonise heat and power at Kirkwall Airport through green hydrogen technology. 2G Energy was selected to deliver a CHP plant which generates heat and electricity from 100% hydrogen.

Heat decarbonisation options 

The Energy & Climate Intelligence Unit (ECIU) highlights the following options for decarbonising heating. 

Electrification

Use renewable electricity to generate heat in the home. As power sector emissions fall, emissions associated with electric heating are decreasing rapidly.

Low carbon gases

Replace natural gas that most homes use for heating with hydrogen, which releases energy but not carbon dioxide, the only waste product is water. Biomethane is also an option as it produces less carbon than natural gas over a full lifecycle.

For hydrogen to work, the pipes in the national gas grid would need to be replaced and home boilers would need to be adapted or changed. This is possible but could incur considerable cost. 

Biomethane is chemically identical to methane from natural gas, so is suited to existing infrastructure and appliances. It is unlikely, however, that it can be produced in sufficient quantities to replace fossil gas entirely.

Hybrids

A hybrid system combining both electrification and hydrogen is a third option. Here, heat pumps could be used to meet the majority of heat demand, with a (low carbon) gas boiler taking over in extremely cold weather. Advantages of this approach include helping establish a market for heat pumps while hydrogen is developed to displace natural gas in the hybrid system eventually, and the ability to call on hydrogen when heat demand is at its very highest.

Heat networks

Heat networks connect a central heat source to a number of buildings via a series of underground hot water pipes, and are popular in countries such as Denmark, where heat networks supply 63% of households. The Government expects the heat networks market in the UK to grow quickly to supply up to 20% of heat demand over the next decade or so, investing £320 million into its flagship Heat Networks Investment Project to help get this underway.

Heat networks work particularly well in built-up urban areas or industrial clusters where there is a large and concentrated demand for heat. Over time, it is thought that if the central heat source can be low carbon, then there is the opportunity to ensure that multiple homes and buildings are decarbonised at once.

Biomass

Biomass can be used to reduce emissions when used instead of more polluting fuels like oil in off gas grid properties. Support for biomass boilers has been available since 2011 via the Renewable Heat Incentive (RHI), but take-up has been low.

Supply constraints also restrict the role that biomass – burning solid material such as wood – can play. In any case, according to the Committee on Climate Change, this resource may be better used in other sectors of the economy such as construction, where it provides carbon storage without the need for CCS and reduces demand for carbon-intensive materials such as steel and cement.

The Energy Transitions Commission (ETC)'s latest report sets out how rapidly increasing demand for bioresources could outstrip sustainable supply, undermining climate mitigation efforts and harming biodiversity, unless alternative zero-carbon options are rapidly scaled-up and use of bioresources carefully prioritised.

"Alternative zero-carbon solutions, such as clean electrification or hydrogen, must be developed rapidly to lessen the need for bio-based solutions," it states.

The overall decarbonisation of industry is another major challenge, especially among four sectors that contribute 45 percent of CO2 emissions: cement, steel, ammonia, and ethylene, according to a McKinsey report. 

The process demands reimagining production processes from scratch and redesigning existing sites with costly rebuilds or retrofits. Furthermore, companies that adopt low-carbon production processes will see a short- to mid-term increase in cost, ultimately placing them at an economic disadvantage in a competitive global commodities market.

Next steps

Ken Hunnisett is Project Director for the Heat Network Investment Project (HNIP)’s delivery partner Triple Point, which is the delivery partner for the government's Heat Network Investment Project, which is responsible for investing up to £320million in strategic, low-carbon heat network projects across England and Wales.

He is calling for the urgent need to invest in the development of new heating infrastructure to support the nation’s decarbonisation effort. So far £165m of HNIP funds have prompted £421m CAPEX, providing more green jobs as the UK economy eases from the lows sustained from the pandemic.  

Decarbonising the UK's heating infrastructure is critical if we are to reach our net-zero goals and it’s crucial that progress is made in this decisive decade, he added. 

"Heat networks are a part of the lowest-cost pathway to decarbonising our homes and workplaces in the future but are also the bit of the jigsaw that we can be putting into place now," he said. "Penetration into the UK market is still low, despite heat representing 37% of UK greenhouse gas emissions, the largest single contributor by some way. Funding needs to be urgently directed towards reducing the environmental impact of the residential sector, particularly given the slow pace of the decline in residential emissions in comparison to those of business and transport."

Currently, just 3% of UK buildings are serviced by heat networks. "Further investment in this industry, using public and private funds, will not only drive wider sustainability targets but will boost the economy by providing more green jobs as the country emerges from the pandemic," he said.

Share article